The following function takes 4 inputs:
DefBlock:=function(H,e,r,l)
local p,c,sp,basis,dim,tup,block,lc,defect,s,i,j;
p:=CharParams(H.reflectionGroup);
c:=CharTable(H).irreducibles;
sp:=List(c,i->List(i,j->Value(j,["x",E(e)^r])));
basis:=sp{List(l,i->Position(p,[i]))};
dim:=Length(basis);
tup:=Tuples([0,1,2,3,4,5,6],dim);
lc:=List(tup,j->Sum([1..dim],i->j[i]*basis[i]));
block:=Set(Concatenation(List(lc,j->Positions(sp,j))));
defect:=[];
for i in block do
s:=FactorizedSchurElement(H,p[i]).vcyc[1].pol.vcyc;
if e=1 then Add(defect,s[PositionProperty(s,j->j[1]=0)][2]);
else Add(defect,s[PositionProperty(s,j->j[1]=r/e)][2]);fi;
od;
return [Set(defect),p{block}];
end;
The outputs of the above function is a list with two elements:
gap> DefBlock(H,30,7,[[1,0],[1,30]]); gap> DefBlock(H,30,13,[[1,0],[1,30]]); gap> DefBlock(H,30,17,[[1,0],[1,30]]); gap> DefBlock(H,30,23,[[1,0],[1,30]]); [ [ [ 1 ] ], [ [ [ 1, 0 ] ], [ [ 1, 30 ] ], [ [ 2, 1 ] ] ] ]We observe that all the lists Set(defect) only contain one element. This means that all characters inside a block have the same defect. This proves the main result of [ChJa] for all cyclotomic Hecke algebras of [ChMi].