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ABSTRACT. In this note, we describe the irreducible representations and give a dimension
formula for the Framisation of the Temperley–Lieb algebra.

1. INTRODUCTION

The Temperley–Lieb algebra was introduced by Temperley and Lieb in [TeLi] for its
applications in statistical mechanics. It was later shown by Jones [Jo1, Jo2] that it can be
obtained as a quotient of the Iwahori–Hecke algebra of type A. Both algebras depend on
a parameter q. Jones showed that there exists a unique Markov trace, called the Ocneanu
trace, on the Iwahori–Hecke algebra, which depends on a parameter z. For a specific value
of z, the Ocneanu trace passes to the Temperley–Lieb algebra. Jones used the Ocneanu
trace on the Temperley–Lieb algebra to define a polynomial knot invariant, the famous
Jones polynomial. Using the Ocneanu trace as defined originally on the Iwahori–Hecke al-
gebra of type A yields another famous polynomial invariant, the HOMFLYPT polynomial,
which is also known as the 2-variable Jones polynomial (the 2 variables being q and z).

Yokonuma–Hecke algebras were introduced by Yokonuma as generalisations of Iwahori–
Hecke algebras in the context of finite Chevalley groups. The Yokonuma–Hecke algebra of
type A is the centraliser algebra associated to the permutation representation of the general
linear group over a finite field with respect to a maximal unipotent subgroup. Juyumaya
has given a generic presentation for this algebra, depending on a parameter q, and defined a
Markov trace on it, the latter depending on several parameters [Ju1, JuKa, Ju2]. This trace
was subsequently used by Juyumaya and Lambropoulou for the construction of invariants
for framed knots and links [JuLa1, JuLa2]. They later showed that these invariants can be
also used for classical and singular knots and links [JuLa3, JuLa4]. The next step was to
construct an analogue of the Temperley–Lieb algebra in this case.

As it is explained in more detail in [JuLa5], where the technique of framisation is thor-
oughly discussed, three possible candidates arose. The first candidate was the Yokonuma–
Temperley–Lieb algebra, which was defined in [GJKL1] as the quotient of the Yokonuma–
Hecke algebra by exactly the same ideal as the one used by Jones in the classical case. We
studied the representation theory of this algebra and constructed a basis for it in [ChPo].

We are grateful to Dimoklis Goundaroulis, Jesús Juyumaya, Aristides Kontogeorgis and Sofia Lambropoulou
for introducing us to this whole range of problems, and for many fruitful conversations. We would also like to
thank Tamás Hausel for his interesting questions that led us to provide some extra results on the Yokonuma–Hecke
algebra. The first author thanks the Centro di Ricerca Matematica Ennio De Giorgi in Pisa for its hospitality
during the programme “Perspectives in Lie Theory” in January 2015. This research has been co-financed by
the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program
“Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding
Program: THALIS.
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The values of the parameters for which Juyumaya’s Markov trace passes to the Yokonuma–
Temperley–Lieb algebra are given in [GJKL1]. Unfortunately, for these values, the invari-
ants for classical knots and links obtained from the Yokonuma–Temperley–Lieb algebra
are equivalent to the Jones polynomial.

A second candidate, which is more interesting topologically, was suggested in [GJKL2].
This is the Framisation of the Temperley–Lieb algebra, whose representation theory we
study in this paper. The Framisation of the Temperley–Lieb algebra is defined in a subtler
way than the Yokonuma–Temperley–Lieb algebra, as the quotient of the Yokonuma–Hecke
algebra by a more elaborate ideal, and it is larger than the Yokonuma–Temperley–Lieb
algebra. The values of the parameters for which Juyumaya’s Markov trace passes to this
quotient are given in [GJKL2]. It was recently shown that the Juyumaya–Lambropoulou
invariants for classical links are stronger than the HOMFLYPT polynomial [CJKL]. It turns
out that, in a similar way, the invariants for classical links obtained from the Framisation
of the Temperley–Lieb algebra are stronger than the Jones polynomial.

The third candidate is the so-called Complex Temperley–Lieb algebra, which is larger
than the Framisation of the Temperley–Lieb algebra, but provides the same topological
information (see [JuLa5]).

In this note, we study the representation theory of the Framisation of the Temperley–
Lieb algebra. In Proposition 5 we give a complete description of its irreducible representa-
tions, by showing which irreducible representations of the Yokonuma–Hecke algebra pass
to the quotient. The representations of the Yokonuma–Hecke algebra of type A were first
studied by Thiem [Th1, Th2, Th3], but here we use their explicit description given later in
[ChPA]. Our result generalises in a natural way the analogous result in the classical case.
We then use the dimensions of the irreducible representations of the Framisation of the
Temperley–Lieb algebra in order to compute the dimension of the algebra. We deduce a
combinatorial formula involving Catalan numbers, given in Proposition 6.

A reference to the results of this note is included in [GJKL2], so we decided to finally
provide them in written form. We also take this opportunity to write down the relations
between three types of generators used in bibliography so far (Remark 2), and show that the
Yokonuma–Hecke algebra is split semisimple over a smaller field than the one considered
in [ChPA] (Corollary 2).

2. THE TEMPERLEY–LIEB ALGEBRA

In this section, we recall the definition of the Temperley–Lieb algebra as a quotient of
the Iwahori–Hecke algebra of type A given by Jones [Jo2], and some classical results on
its representation theory.

2.1. The Iwahori–Hecke algebra Hn(q). Let n ∈ N and let q be an indeterminate. The
Iwahori–Hecke algebra of type A, denoted by Hn(q), is a C[q, q−1]-associative algebra
generated by the elements

G1, . . . , Gn−1

subject to the following relations:

(2.1)
GiGj = GjGi for all i, j = 1, . . . , n− 1 with |i− j| > 1,

GiGi+1Gi = Gi+1GiGi+1 for all i = 1, . . . , n− 2,

together with the quadratic relations:

(2.2) G2
i = q + (q − 1)Gi for all i = 1, . . . , n− 1.
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Remark 1. If we specialise q to 1, the defining relations (2.1)–(2.2) become the defining
relations for the symmetric group Sn. Thus the algebra Hn(q) is a deformation of the
group algebra over C of Sn.

2.2. The Temperley–Lieb algebra TLn(q). Let i = 1, . . . , n− 1. We set

Gi,i+1 := 1 +Gi +Gi+1 +GiGi+1 +Gi+1Gi +GiGi+1Gi.

We define the Temperley–Lieb algebra TLn(q) to be the quotientHn(q)/I , where I is the
ideal generated by the element G1,2. We have Gi,i+1 ∈ I for all i = 1, . . . , n− 2, since

Gi,i+1 = (G1G2 · · ·Gn−1)i−1G1,2(G1G2 · · ·Gn−1)−(i−1).

2.3. Combinatorics of partitions. Let λ ` n be a partition of n, that is, λ = (λ1, . . . , λk)
is a string of positive integers such that λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1 and |λ| := λ1+· · ·+λk =
n. We shall also say that λ is a partition of size n.

We identify partitions with their Young diagrams: the Young diagram of λ is a left-
justified array of k rows such that the j-th row contains λj nodes for all j = 1, . . . , k. We
write θ = (x, y) for the node in row x and column y.

For a node θ lying in the line x and the column y of λ (that is, θ = (x, y)), we define
c(θ) := qy−x. The number c(θ) is called the (quantum) content of θ.

Now, a tableau of shape λ is a bijection between the set {1, . . . , n} and the set of nodes
in λ. In other words, a tableau of shape λ is obtained by placing the numbers 1, . . . , n in
the nodes of λ. The size of a tableau of shape λ is n, that is, the size of λ. A tableau is
standard if its entries increase along any row and down any column of the diagram of λ.

For a tableau T , we denote by c(T |i) the quantum content of the node with the number
i in it. For example, for the standard tableau T = 1 2 3 of size 3, we have

c(T |1) = 1 , c(T |2) = q and c(T |3) = q2 .

For any tableau T of size n and any permutation σ ∈ Sn, we denote by T σ the tableau
obtained from T by applying the permutation σ on the numbers contained in the nodes of
T . We have

c(T σ|i) = c
(
T |σ−1(i)

)
for all i = 1, . . . , n.

Note that if the tableau T is standard, the tableau T σ is not necessarily standard.

2.4. Formulas for the irreducible representations of C(q)Hn(q). We set C(q)Hn(q) :=
C(q)⊗C[q,q−1] Hn(q). Let P(n) be the set of all partitions of n, and let λ ∈ P(n). Let Vλ
be a C(q)-vector space with a basis {vT } indexed by the standard tableaux of shape λ. We
set vT := 0 for any non-standard tableau T of shape λ. We have the following result on
the representations of C(q)Hn(q), established in [Ho]:

Proposition 1. Let T be a standard tableau of shape λ ∈ P(n). For brevity, we set
ci := c(T |i) for i = 1, . . . , n. The vector space Vλ is an irreducible representation of
C(q)Hn(q) with the action of the generators on the basis element vT defined as follows:
for i = 1, . . . , n− 1,

(2.3) Gi(vT ) =
qci+1 − ci+1

ci+1 − ci
vT +

qci+1 − ci
ci+1 − ci

vT si
,

where si is the transposition (i, i + 1). Further, the set {Vλ}λ∈P(n) is a complete set of
pairwise non-isomorphic irreducible representations of C(q)Hn(q).

Corollary 1. The algebra C(q)Hn(q) is split semisimple.
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2.5. Irreducible representations of C(q)TLn(q). Since the algebra C(q)Hn(q) is semisim-
ple, the algebra C(q)TLn(q) := C(q) ⊗C[q,q−1] TLn(q) is also semisimple. Moreover,
the irreducible representations of C(q)TLn(q) are precisely the irreducible representations
of C(q)Hn(q) that pass to the quotient. That is, Vλ is an irreducible representation of
C(q)TLn(q) if and only if G1,2(vT ) = 0 for every standard tableau T of shape λ. It is
easy to check that the latter is equivalent to the trivial representation not being a direct
summand of the restriction ResSn

〈s1,s2〉(E
λ), where Eλ is the irreducible representation of

the symmetric group Sn (equivalently, the algebra CHn(1)) labelled by λ. We thus obtain
the following description of the irreducible representations of C(q)TLn(q):

Proposition 2. We have that Vλ is an irreducible representation of C(q)TLn(q) if and
only if the Young diagram of λ has at most two columns.

2.6. The dimension of C(q)TLn(q). For n ∈ N, we denote by Cn the n-th Catalan
number, that is, the number

Cn =
1

n+ 1

(
2n

n

)
=

1

n+ 1

n∑
k=0

(
n

k

)2

.

We have the following standard result on the dimension of C(q)TLn(q) (cf. [Jo1, Jo2]):

Proposition 3. We have
dimC(q)(C(q)TLn(q)) = Cn.

3. THE FRAMISATION OF THE TEMPERLEY–LIEB ALGEBRA

In this section, we will look at a generalisation of the Temperley–Lieb algebra, which
is obtained as a quotient of the Yokonuma–Hecke algebra of type A. This algebra was
introduced in [GJKL2], where some of its topological properties were studied. Here we
will determine its irreducible representations and calculate its dimension.

3.1. The Yokonuma–Hecke algebra Yd,n(q). Let d, n ∈ N. Let q be an indeterminate.
The Yokonuma–Hecke algebra of type A, denoted by Yd,n(q), is a C[q, q−1]-associative
algebra generated by the elements

g1, . . . , gn−1, t1, . . . , tn

subject to the following relations:

(3.1)

(b1) gigj = gjgi for all i, j = 1, . . . , n− 1 with |i− j| > 1,
(b2) gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n− 2,
(f1) titj = tjti for all i, j = 1, . . . , n,
(f2) tjgi = gitsi(j) for all i = 1, . . . , n− 1 and j = 1, . . . , n,
(f3) tdj = 1 for all j = 1, . . . , n,

where si is the transposition (i, i+ 1), together with the quadratic relations:

(3.2) g2i = q + (q − 1) ei gi for all i = 1, . . . , n− 1,

where

(3.3) ei :=
1

d

d−1∑
s=0

tsi t
−s
i+1.

Note that we have e2i = ei and eigi = giei for all i = 1, . . . , n− 1. Moreover, we have

(3.4) tiei = ti+1ei for all i = 1, . . . , n− 1.
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Remark 2. In [ChPA], the first author and Poulain d’Andecy consider the braid generators
g̃i := q−1/2gi which satisfy the quadratic relation

(3.5) g̃2i = 1 + (q1/2 − q−1/2)eig̃i .

On the other hand, in all the papers [Ju2, JuLa2, JuLa3, ChLa] prior to [ChPA], the authors
consider the braid generators ḡi = g̃i+(q1/2−1) eig̃i (and thus, g̃i := ḡi+(q−1/2−1) eiḡi)
which satisfy the quadratic relation

(3.6) ḡ2i = 1 + (q − 1) ei + (q − 1) ei ḡi .

Note that

(3.7) eigi = eiḡi = q1/2eig̃i for all i = 1, . . . , n− 1.

Remark 3. If we specialise q to 1, the defining relations (3.1)–(3.2) become the defining
relations for the complex reflection group G(d, 1, n) ∼= (Z/dZ) o Sn. Thus the algebra
Yd,n(q) is a deformation of the group algebra over C of the complex reflection group
G(d, 1, n). Moreover, for d = 1, the Yokonuma–Hecke algebra Y1,n(q) coincides with
the Iwahori–Hecke algebraHn(q) of type A.

Remark 4. The relations (b1), (b2), (f1) and (f2) are defining relations for the classical
framed braid group Fn ∼= Z oBn, where Bn is the classical braid group on n strands, with
the tj’s being interpreted as the “elementary framings” (framing 1 on the jth strand). The
relations tdj = 1 mean that the framing of each braid strand is regarded modulo d. Thus,
the algebra Yd,n(q) arises naturally as a quotient of the framed braid group algebra over
the modular relations (f3) and the quadratic relations (3.2). Moreover, relations (3.1) are
defining relations for the modular framed braid group Fd,n ∼= (Z/dZ) oBn, so the algebra
Yd,n(q) can be also seen as a quotient of the modular framed braid group algebra over the
quadratic relations (3.2).

3.2. The Framisation of the Temperley–Lieb algebra FTLd,n(q). Let i = 1, . . . , n−1.
We set

gi,i+1 := 1 + gi + gi+1 + gigi+1 + gi+1gi + gigi+1gi.

We define the Framisation of the Temperley–Lieb algebra to be the quotient Yd,n(q)/I ,
where I is the ideal generated by the element

e1e2 g1,2.

Note that, due to (3.4), e1e2 commutes with g1 and with g2, so it commutes with g1,2.
Further, we have eiei+1gi,i+1 ∈ I for all i = 1, . . . , n− 2, since

eiei+1gi,i+1 = (g1g2 . . . gn−1)i−1e1e2 g1,2(g1g2 . . . gn−1)−(i−1).

Remark 5. In [GJKL2], the Framisation of the Temperley–Lieb algebra is defined to be
the quotient Yd,n(q)/J , where J is the ideal generated by the element e1e2 ḡ1,2, where

ḡ1,2 = 1 + ḡ1 + ḡ2 + ḡ1ḡ2 + ḡ2ḡ1 + ḡ1ḡ2ḡ1.

Due to (3.7) and the fact that the ei’s are idempotents, we have e1e2 ḡ1,2 = e1e2 g1,2, and
so I = J .

Remark 6. For d = 1, the Framisation of the Temperley–Lieb algebra FTL1,n(q) coin-
cides with the classical Temperley–Lieb algebra TLn(q).
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3.3. Combinatorics of d-partitions. A d-partition λ, or a Young d-diagram, of size n is a
d-tuple of partitions such that the total number of nodes in the associated Young diagrams
is equal to n. That is, we have λ = (λ(1), . . . ,λ(d)) with λ(1), . . . ,λ(d) usual partitions
such that |λ(1)|+ · · ·+ |λ(d)| = n.

A pair θ = (θ, k) consisting of a node θ and an integer k ∈ {1, . . . , d} is called a d-
node. The integer k is called the position of θ. A d-partition is then a set of d-nodes such
that the subset consisting of the d-nodes having position k forms a usual partition, for any
k ∈ {1, . . . , d}.

For a d-node θ lying in the line x and the column y of the k-th diagram of λ (that is,
θ = (x, y, k)), we define p(θ) := k and c(θ) := qy−x. The number p(θ) is the position
of θ and the number c(θ) is called the (quantum) content of θ.

Let λ = (λ(1), . . . ,λ(d)) be a d-partition of n. A d-tableau of shape λ is a bijection
between the set {1, . . . , n} and the set of d-nodes in λ. In other words, a d-tableau of shape
λ is obtained by placing the numbers 1, . . . , n in the d-nodes of λ. The size of a d-tableau
of shape λ is n, that is, the size of λ. A d-tableau is standard if its entries increase along
any row and down any column of every diagram in λ. For d = 1, a standard 1-tableau is a
usual standard tableau.

For a d-tableau T , we denote respectively by p(T |i) and c(T |i) the position and the
quantum content of the d-node with the number i in it. For example, for the standard
3-tableau T =

(
1 3 , ∅ , 2

)
of size 3, we have

p(T |1) = 1 , p(T |2) = 3 , p(T |3) = 1 and c(T |1) = 1 , c(T |2) = 1 , c(T |3) = q .

For any d-tableau T of size n and any permutation σ ∈ Sn, we denote by T σ the d-
tableau obtained from T by applying the permutation σ on the numbers contained in the
d-nodes of T . We have

p(T σ|i) = p
(
T |σ−1(i)

)
and c(T σ|i) = c

(
T |σ−1(i)

)
for all i = 1, . . . , n.

Note that if the d-tableau T is standard, the d-tableau T σ is not necessarily standard.

3.4. Formulas for the irreducible representations of C(q)Yd,n(q). The representation
theory of Yd,n(q) has been first studied by Thiem in [Th1, Th2, Th3] and subsequently in
[ChPA], where a description of its irreducible representations in terms of d-partitions and
d-tableaux is given.

Let P(d, n) be the set of all d-partitions of n, and let λ ∈ P(d, n). Let Ṽλ be a C(q1/2)-
vector space with a basis {ṽT } indexed by the standard d-tableaux of shape λ. In [ChPA,
Proposition 5], the authors describe actions of the generators g̃i, for i = 1, . . . , n−1, and tj ,
for j = 1, . . . , n, on {ṽT }, which make Ṽλ into a representation of Yd,n(q) over C(q1/2).
The matrices describing the action of the generators tj have complex coefficients, while
the ones describing the action of the generators g̃i have coefficients in C(q1/2). However,
the change of basis

(3.8) vT := qNT /2 ṽT ,

where NT := #{i ∈ {1, . . . , n−1} |p(T |i) < p(T |i+ 1)}, and the change of generators

(3.9) gi = q1/2 g̃i

yield a description of the action of Yd,n(q) on Ṽλ which is realised over C(q) (see propo-
sition below).

Let Vλ be a C(q)-vector space with a basis {vT } indexed by the standard d-tableaux of
shape λ. We set vT := 0 for any non-standard d-tableau T of shape λ. Let {ξ1, . . . , ξd} be
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the set of all d-th roots of unity (ordered arbitrarily). We set C(q)Yd,n(q) := C(q)⊗C[q,q−1]

Yd,n(q). The following result is [ChPA, Proposition 5] and [ChPA, Theorem 1], with the
change of basis and generators described by (3.8) and (3.9).

Proposition 4. Let T be a standard d-tableau of shape λ ∈ P(d, n). For brevity, we set
pi := p(T |i) and ci := c(T |i) for i = 1, . . . , n. The vector space Vλ is an irreducible
representation of C(q)Yd,n(q) with the action of the generators on the basis element vT
defined as follows: for j = 1, . . . , n,

(3.10) tj(vT ) = ξpjvT ;

for i = 1, . . . , n− 1, if pi > pi+1 then

(3.11) gi(vT ) = vT si
,

if pi < pi+1 then

(3.12) gi(vT ) = q vT si
,

and if pi = pi+1 then

(3.13) gi(vT ) =
qci+1 − ci+1

ci+1 − ci
vT +

qci+1 − ci
ci+1 − ci

vT si
,

where si is the transposition (i, i + 1). Further, the set {Vλ}λ∈P(d,n) is a complete set of
pairwise non-isomorphic irreducible representations of C(q)Yd,n(q).

Corollary 2. The algebra C(q)Yd,n(q) is split semisimple.

Remark 7. Note that

(3.14) ei(vT ) =

{
0 , if pi 6= pi+1;
vT , if pi = pi+1.

3.5. Irreducible representations of C(q)FTLd,n(q). Since the algebra C(q)Yd,n(q) is
semisimple, the algebra C(q)FTLd,n(q) := C(q)⊗C[q,q−1] FTLd,n(q) is also semisimple.
Moreover, the irreducible representations of C(q)FTLd,n(q) are precisely the irreducible
representations of C(q)Yd,n(q) that pass to the quotient. That is, Vλ is an irreducible
representation of C(q)FTLd,n(q) if and only if e1e2g1,2(vT ) = 0 for every standard d-
tableau T of shape λ.

Proposition 5. We have that Vλ is an irreducible representation of C(q)FTLd,n(q) if and
only if the Young diagram of λ(i) has at most two columns for all i = 1, . . . , d.

Proof. Let us assume first that Vλ is an irreducible representation of C(q)FTLd,n(q) and
let i ∈ {1, . . . , d}. Set ni := |λ(i)|. If ni 6 2, then λ(i) has at most two columns. If
ni ≥ 3, let us consider all the standard d-tableaux T = (T (1), . . . , T (d)) of shape λ such
that

p1 = p2 = p3 = · · · = pni = i.

Then, using the notation of Proposition 1 for the Iwahori–Hecke algebraHni
(q) and Equa-

tion (3.14), we obtain

G1,2(v
T (i)

) = g1,2(vT ) = g1,2e1e2(vT ) = e1e2g1,2(vT ) = 0

Since T (i) runs over all the standard tableaux of shape λ(i), Proposition 2 yields that λ(i)

has at most two columns.
Now assume that the Young diagram of λ(i) has at most two columns for all i =

1, . . . , d. Let T = (T (1), . . . , T (d)) be a standard d-tableau of shape λ. If p1 = p2 =
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p3 =: p, then, by (3.14), e1e2g1,2(vT ) = g1,2e1e2(vT ) = g1,2(vT ). In this case, g1,2 acts
on vT in the same way that G1,2 acts on v

T (p)
(replacing the entries greater than 3 by en-

tries in {4, . . . , |λ(p)|}). Following the result on the classical case, we have g1,2(vT ) = 0.
Otherwise, again by (3.14), we have e1e2(vT ) = 0, and e1e2g1,2(vT ) = g1,2e1e2(vT ) =
0 as desired. �

3.6. The dimension of C(q)FTLd,n(q). We will now use the complete description of
the irreducible representations of C(q)FTLd,n(q) by Proposition 5 to obtain a dimension
formula for C(q)FTLd,n(q). Set

Kd,n := {(k1, k2, . . . , kd) ∈ Nd | k1 + k2 + · · ·+ kd = n}.

Proposition 6. We have

dimC(q)(C(q)FTLd,n(q)) =
∑

(k1,k2,...,kd)∈Kd,n

(
n!

k1!k2! . . . kd!

)2

Ck1Ck2 · · ·Ckd .

Proof. Let us denote by P62(d, n) the set of d-partitions λ of n such that the Young
diagram of λ(i) has at most two columns for all i = 1, . . . , d. By Proposition 5, and since
the algebra C(q)FTLd,n(q) is semisimple, we have

dimC(q)(C(q)FTLd,n(q)) =
∑

λ∈P62(d,n)

dimC(q)(Vλ)2,

where dimC(q)(Vλ) is the number of standard d-tableaux of shape λ.
Fix (k1, k2, . . . , kd) ∈ Kd,n. We denote by P62(k1, k2, . . . , kd) the set of all d-

partitions λ in P62(d, n) such that |λ(i)| = ki for all i = 1, . . . , d. We have

dimC(q)(C(q)FTLd,n(q)) =
∑

(k1,k2,...,kd)∈Kd,n

∑
λ∈P62(k1,k2,...,kd)

dimC(q)(Vλ)2.

Let λ ∈ P62(k1, k2, . . . , kd). We have(
n

k1

)(
n− k1
k2

)(
n− k1 − k2

k3

)
· · ·
(
n− k1 − k2 − · · · − kd−1

kd

)
=

n!

k1!k2! . . . kd!

ways to choose the numbers in {1, . . . , n} that will be placed in the nodes of the Young
diagram of λ(i) for each i = 1, . . . , d. We deduce that

dimC(q)(Vλ) =
n!

k1!k2! . . . kd!

d∏
i=1

dimC(q)(Vλ(i)) ,

where Vλ(i) is the irreducible representation of C(q)TLki(q) labelled by λ(i). We thus
obtain that dimC(q)(C(q)FTLd,n(q)) is equal to

∑
(k1,k2,...,kd)∈Kd,n

(
n!

k1!k2! . . . kd!

)2 ∑
λ∈P62(k1,k2,...,kd)

d∏
i=1

dimC(q)(Vλ(i))2.

We now have that ∑
λ∈P62(k1,k2,...,kd)

d∏
i=1

dimC(q)(Vλ(i))2
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is equal to ∑
λ(1)∈P62(1,k1)

∑
λ(2)∈P62(1,k2)

. . .
∑

λ(d)∈P62(1,kd)

d∏
i=1

dimC(q)(Vλ(i))2,

which in turn is equal to

d∏
i=1

 ∑
λ(i)∈P62(1,ki)

dimC(q)(Vλ(i))2

 .

By Proposition 3, we have that∑
λ(i)∈P62(1,ki)

dimC(q)(Vλ(i))2 = dimC(q)(C(q)TLki(q)) = Cki ,

for all i = 1, . . . , d. We conclude that

dimC(q)(C(q)FTLd,n(q)) =
∑

(k1,k2,...,kd)∈Kd,n

(
n!

k1!k2! . . . kd!

)2

Ck1Ck2 · · ·Ckd .

�
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