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ABSTRACT. The definition of Rouquier for the families of characters of
Weyl groups in terms of blocks of the associated Iwahori-Hecke algebra has
allowed the generalization of this notion to the case of complex reflection
groups. In this paper, we will explain the combinatorics involved in the
determination of the families of characters for the imprimitive complex re-
flection groups. We will also demonstrate the significant role played by the
families of characters of the Weyl groups of type B.

1 Introduction

The work of G. Lusztig on the irreducible characters of reductive groups
over finite fields (cf. [18]) has displayed the important role of the “families
of characters” of the Weyl groups concerned. The Weyl groups are particular
cases of complex reflection groups. For some complex reflection groups W ,
some data have been gathered which seem to indicate that behind the group
W , there exists another mysterious object - the Spets (cf. [6], [21]) - that
could play the role of the “series of finite reductive groups of Weyl group
W”. Therefore, it would be of great interest to generalize the notion of
families of characters to the case of complex reflection groups.

Recent results of Gyoja [16] and Rouquier [24] have made possible the
definition of a substitute for families of characters which can be applied
to all complex reflection groups. In particular, Rouquier showed that the
families of characters of a Weyl group W are exactly the blocks of charac-
ters of the Iwahori-Hecke algebra of W over a suitable coefficient ring, the
“Rouquier ring”. This definition generalizes without problem to all cyclo-
tomic Hecke algebras of complex reflection groups. In [8], we showed that
these “Rouquier blocks” of the cyclotomic Hecke algebras of a complex re-
flection group depend on a new numerical datum of the group, its “essential
hyperplanes”. Using this result, we were able to determine the families of
characters for all exceptional irreducible complex reflection groups. Note
that some particular cases had already been treated by Malle and Rouquier
in [22].

In this paper, we will deal with the case of the groups of the infinite series,
i.e., the groups G(de, e, r). In [4], Broué and Kim presented an algorithm for
the determination of the Rouquier blocks of the cyclotomic Hecke algebras of
the groups G(d, 1, r), i.e., the cyclotomic Ariki-Koike algebras. However, it
was recently realized that this algorithm works only when d is the power of a
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prime number. Using the theory of “essential hyperplanes”, we will present
here the correct algorithm for the determination of the Rouquier blocks of
the cyclotomic Ariki-Koike algebras. The most important consequence of
this algorithm is that we can obtain the Rouquier blocks of a cyclotomic
Ariki-Koike algebra associated to G(d, 1, r) from the families of characters
of the Weyl groups of type Bn, n ≤ r, already determined by Lusztig.

As far as the larger family G(de, e, r) is concerned, we will explain how,
in most of the cases (except for when r = 2 and e is even), we can obtain
the Rouquier blocks of the associated cyclotomic Hecke algebras from the
ones of G(de, 1, r), as Kim did in [17]. The results of the determination of
these blocks are thoroughly presented in [10].

2 Hecke algebras of complex reflection groups

2.1 Generic Hecke algebras

Let µ∞ be the group of all the roots of unity in C and K a number field
contained in Q(µ∞). We denote by µ(K) the group of all the roots of unity
of K. For every integer d > 1, we set ζd := exp(2πi/d) and denote by µd
the group of all the d-th roots of unity.

Let V be a K-vector space of finite dimension r. Let W be a finite
subgroup of GL(V ) generated by (pseudo-)reflections acting irreducibly on
V . Let us denote by A the set of the reflecting hyperplanes of W and set
V reg := C ⊗ V −

⋃
H∈AC ⊗H. For x0 ∈ V reg, let B := Π1(V reg/W, x0) be

the braid group associated to W (cf. [7], §2B).
For every orbit C of W on A, we denote by eC the common order of the

subgroups WH , where H is any element of C and WH the subgroup of W
formed by idV and all the reflections fixing the hyperplane H.

We choose a set of indeterminates u = (uC,j)(C∈A/W )(0≤j≤eC−1) and we
denote by Z[u,u−1] the Laurent polynomial ring in all the indeterminates
u. We define the generic Hecke algebra H(W ) of W to be the quotient of
the group algebra Z[u,u−1]B by the ideal generated by the elements of the
form

(s− uC,0)(s− uC,1) . . . (s− uC,eC−1),

where C runs over the set A/W and s runs over the set of monodromy
generators around the images in V reg/W of the elements of the hyperplane
orbit C.

Example 2.1 Let W := G2 =< s, t | ststst = tststs, s2 = t2 = 1 > be the
dihedral group of order 12. Then the generic Hecke algebra of W is defined over the
Laurent polynomial ring in four indeterminates Z[u0, u

−1
0 , u1, u

−1
1 , w0, w

−1
0 , w1, w

−1
1 ]

and can be presented as follows:

H(G2) =< S, T | STSTST = TSTSTS, (S − u0)(S − u1) = 0,
(T − w0)(T − w1) = 0 > .
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From now on, we make the following assumptions for H(W ), which have
been verified for all but a finite number of irreducible complex reflection
groups ([6], remarks before 1.17, § 2; [14]).

1. The algebra H(W ) is a free Z[u,u−1]-module of rank |W |.

2. H(W ) is endowed with a unique canonical symmetrizing form t.

Then we have the following result by G. Malle ([20], Theorem 5.2).

Theorem 2.2 Let v = (vC,j)(C∈A/W )(0≤j≤eC−1) be a set of indeterminates
such that, for every C, j, we have

v
|µ(K)|
C,j = ζ−jeC uC,j .

Then the K(v)-algebra K(v)H(W ) is split semisimple.

By “Tits’ deformation theorem” (cf., for example, [13], Theorem 7.4.6),
it follows that the specialization vC,j 7→ 1 induces a bijection

Irr(K(v)H(W )) ↔ Irr(W )
χv 7→ χ.

Moreover, we have that

t =
∑

χ∈Irr(W )

1
sχ
χv,

where sχ is the Schur element associated to χv ∈ Irr(K(v)H(W )). By [13],
Proposition 7.3.9, we know that sχ ∈ ZK [v,v−1], where ZK denotes the
integral closure of Z in K.

The following result concerning the form of the Schur elements associated
to the irreducible characters of K(v)H(W ) is proved in [8], Theorem 3.2.5,
using a case by case analysis.

Theorem 2.3 The Schur element sχ associated to the irreducible character
χv of K(v)H(W ) is of the form

sχ(v) = ξχNχ

∏
i∈Iχ

Ψχ,i(Mχ,i)nχ,i

where

• ξχ ∈ ZK ,

• Nχ =
∏
C,j v

bC,j
C,j is a monomial in ZK [v,v−1] such that

∑eC−1
j=0 bC,j = 0

for all C ∈ A/W ,

• Iχ is an index set,
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• (Ψχ,i)i∈Iχ is a family of K-cyclotomic polynomials in one variable (i.e.,
minimal polynomials of the roots of unity over K),

• (Mχ,i)i∈Iχ is a family of monomials in ZK [v,v−1] such that if Mχ,i =∏
C,j v

aC,j
C,j , then gcd(aC,j) = 1 and

∑eC−1
j=0 aC,j = 0 for all C ∈ A/W ,

• (nχ,i)i∈Iχ is a family of positive integers.

The above factorization is unique in K[v,v−1]. Moreover, the monomials
(Mχ,i)i∈Iχ are unique up to inversion.

Example 2.4 Let W := G2. We have seen that

H(G2) =< S, T | STSTST = TSTSTS, (S − u0)(S − u1) = 0,
(T − w0)(T − w1) = 0 > .

Set x2
0 := u0, x2

1 := −u1, y2
0 := w0, y2

1 := −w1. By Theorem 2.2, the algebra
Q(x0, x1, y0, y1)H(G2) is split semisimple and hence, there exists a bijection between
its irreducible characters and the irreducible characters of G2. The group G2 has 4
irreducible characters of degree 1 and 2 irreducible characters of degree 2. Set

s1(x0, x1, y0, y1) := Φ4(x0x
−1
1 ) · Φ4(y0y−1

1 ) · Φ3(x0x
−1
1 y0y

−1
1 ) · Φ6(x0x

−1
1 y0y

−1
1 )

and
s2(x0, x1, y0, y1) := 2x−2

0 x2
1 · Φ3(x0x

−1
1 y0y

−1
1 ) · Φ6(x0x

−1
1 y−1

0 y1),

where
Φ3(x) = x2 + x+ 1,Φ4(x) = x2 + 1,Φ6(x) = x2 − x+ 1.

The Schur elements of H(G2) are

s1(x0, x1, y0, y1), s1(x0, x1, y1, y0), s1(x1, x0, y0, y1), s1(x1, x0, y1, y0),

s2(x0, x1, y0, y1), s2(x0, x1, y1, y0).

Due to the uniqueness (up to inversion) of the monomials appearing in
the factorization of the Schur elements of H(W ), we can define the essential
monomials for W .

Definition 2.5 Let p be a prime ideal of ZK and let M =
∏
C,j v

aC,j
C,j be a

monomial in ZK [v,v−1] such that gcd(aC,j) = 1. We say that M is a p-
essential monomial for W if there exists an irreducible character χ ∈ Irr(W )
and a K-cyclotomic polynomial Ψ such that

• Ψ(M) is an irreducible factor of sχ(v).

• Ψ(1) ∈ p.

We say that M is an essential monomial for W , if there exists a prime ideal
p of ZK such that M is p-essential for W .

Example 2.6 Since Φ3(1) = 3, Φ4(1) = 2 and Φ6(1) = 1, the description of the
Schur elements of H(G2) in Example 2.4 implies that

• the 2Z-essential monomials for G2 are x0x
−1
1 and y0y−1

1 (and their inverses),

• the 3Z-essential monomials for G2 are x0x
−1
1 y0y

−1
1 and x0x

−1
1 y−1

0 y1 (and
their inverses).
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2.2 Cyclotomic Hecke algebras

Let y be an indeterminate. We set q := y|µ(K)|.

Definition 2.7 A cyclotomic specialization of H(W ) is a ZK-algebra mor-
phism φ : ZK [v,v−1]→ ZK [y, y−1] with the following properties:

• φ : vC,j 7→ ynC,j , where nC,j ∈ Z for all C and j.

• For all C ∈ A/W , if z is another indeterminate, then the element of
ZK [y, y−1, z] defined by

ΓC(y, z) :=
eC−1∏
j=0

(z − ζjeCy
nC,j )

is invariant by the action of Gal(K(y)/K(q)).

We can also write φ : uC,j 7→ ζjeCq
nC,j .

If φ is a cyclotomic specialization ofH(W ), the corresponding cyclotomic
Hecke algebra is the ZK [y, y−1]-algebra, denoted by Hφ, which is obtained as
the specialization of the ZK [v,v−1]-algebra H(W ) via the morphism φ. It
also has a symmetrizing form tφ defined as the specialization of the canonical
form t.

Example 2.8 The spetsial Hecke algebra Hsq(W ) is the cyclotomic algebra ob-
tained via the specialization

uC,0 7→ q, uC,j 7→ ζjeC for 1 ≤ j ≤ eC − 1, for all C ∈ A/W.

For example, if W := G2, then

Hsq(G2) =< S, T |STSTST = TSTSTS, (S − q)(S + 1) = (T − q)(T + 1) = 0 > .

The following result is proved in [8] (remarks following Theorem 3.3.3):

Proposition 2.9 The algebra K(y)Hφ is split semisimple.

When y specializes to 1, the algebra K(y)Hφ specializes to the group
algebra KW . Thus, by “Tits’ deformation theorem”, the specialization
vC,j 7→ 1 defines the following bijections

Irr(K(v)H(W )) ↔ Irr(K(y)Hφ) ↔ Irr(W )
χv 7→ χφ 7→ χ.

The following result is an immediate consequence of Theorem 2.3.

Proposition 2.10 The Schur element sχφ(y) associated to the irreducible
character χφ of K(y)Hφ is a Laurent polynomial in y of the form

sχφ(y) = ψχ,φy
aχ,φ

∏
Φ∈CK

Φ(y)nχ,φ,Φ

where ψχ,φ ∈ ZK , aχ,φ ∈ Z, nχ,φ,Φ ∈ N and CK is a set of K-cyclotomic
polynomials.
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2.3 Rouquier blocks of the cyclotomic Hecke algebras

Definition 2.11 We call Rouquier ring of K and denote by RK(y) the ZK-
subalgebra of K(y)

RK(y) := ZK [y, y−1, (yn − 1)−1
n≥1]

Let φ : vC,j 7→ ynC,j be a cyclotomic specialization of H(W ) and Hφ the
corresponding cyclotomic Hecke algebra. Set O := ZK [y, y−1]

Definition 2.12 The Rouquier blocks of Hφ are the blocks of the algebra
RK(y)Hφ := RK(y) ⊗O Hφ, i.e., the partition RB(Hφ) of Irr(W ) minimal
for the property:

for all B ∈ RB(Hφ) and h ∈ Hφ,
∑
χ∈B

χφ(h)
sχφ

∈ RK(y).

It has been shown by Rouquier ([24]), that if W is a Weyl group andHφ is
obtained via the “spetsial” cyclotomic specialization (see Example 2.8), then
the Rouquier blocks of Hφ coincide with the “families of characters” defined
by Lusztig. This definition generalizes without problem to all cyclotomic
Hecke algebras of complex reflection groups. Thus, the Rouquier blocks
play an essential role in the program “Spets” (cf. [6]) whose ambition is to
give to complex reflection groups the role of Weyl groups of as yet mysterious
structures.

The Rouquier ring is a Dedekind ring (cf., for example, [8], Proposition
3.4.2). The following result is an immediate consequence of an elementary
result on blocks and the form of the Schur elements of Hφ.

Proposition 2.13 The characters χ, ψ ∈ Irr(W ) belong to the same Rouquier
block of Hφ if and only if there exist a finite sequence of irreducible charac-
ters χ0, χ1, . . . , χn ∈ Irr(W ) and a finite sequence of prime ideals p1, . . . , pn
of ZK such that

• χ0 = χ and χn = ψ,

• ∀i (1 ≤ i ≤ n), χi−1 and χi belong to the same block of OpiOHφ.

Thanks to the above result, we have transferred the problem of the de-
termination of the Rouquier blocks of Hφ to that of the determination of
the “p-blocks” of Hφ (i.e., the blocks of OpOHφ), where p is a prime ideal
of ZK . Note that OpO ∼= RK(y)pRK(y) is a discrete valuation ring and thus,
the p-blocks of Hφ are in bijection with the blocks of Fp(y)Hφ, where Fp

denotes the finite field ZK/p.
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Now, set m :=
∑
C∈A/W eC . If M =

∏
C,j v

aC,j
C,j is a p-essential monomial

for W , then the hyperplane defined in Cm by the relation∑
C,j

aC,jtC,j = 0,

where (tC,j)C,j is a set of m indeterminates, is called p-essential hyperplane
forW . A hyperplane in Cm is called simply essential forW , if it is p-essential
for some prime ideal p of ZK .

• If the integers nC,j belong to no p-essential hyperplane (resp. no es-
sential hyperplane) for W , then the p-blocks (resp. Rouquier blocks)
of Hφ are called p-blocks associated with no essential hyperplane (resp.
Rouquier blocks associated with no essential hyperplane). They do not
depend on the values of the nC,j .

• If the integers nC,j belong to exactly one p-essential hyperplane H
(resp. exactly one essential hyperplane H) for W , then the p-blocks
(resp. Rouquier blocks) of Hφ are called p-blocks associated with the
essential hyperplane H (resp. Rouquier blocks associated with the es-
sential hyperplane H). They do not depend on the values of the nC,j .

The following result (cf. [8], Chapter 3) establishes the connection be-
tween the p-essential hyperplanes for W and the p-blocks of Hφ.

Theorem 2.14 Let φ : vC,j 7→ ynC,j be a cyclotomic specialization and
Hφ the corresponding cyclotomic Hecke algebra. Let Ep be the set of all
p-essential hyperplanes for W that the integers nC,j belong to. If Ep = ∅,
then the p-blocks of Hφ are the p-blocks associated with no essential hyper-
plane. If Ep 6= ∅, then two irreducible characters χ, ψ ∈ Irr(W ) belong to the
same p-block of Hφ if and only if there exist a finite sequence of irreducible
characters χ0, χ1, . . . , χn ∈ Irr(W ) and a finite sequence of p-essential hy-
perplanes H1, . . . ,Hn ∈ Ep such that

• χ0 = χ and χn = ψ,

• ∀i (1 ≤ i ≤ n), χi−1 and χi belong to the same p-block associated with
Hi.

Thanks to Proposition 2.13 and Theorem 2.14, we obtain the connection
between the essential hyperplanes for W and the Rouquier blocks of Hφ.

Corollary 2.15 Let φ : vC,j 7→ ynC,j be a cyclotomic specialization and Hφ
the corresponding cyclotomic Hecke algebra. Let E be the set of all essential
hyperplanes for W that the integers nC,j belong to. If E = ∅, then the
Rouquier blocks of Hφ are the Rouquier blocks associated with no essential
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hyperplane. If E 6= ∅, then two irreducible characters χ, ψ ∈ Irr(W ) belong
to the same Rouquier block of Hφ if and only if there exist a finite sequence
of irreducible characters χ0, χ1, . . . , χn ∈ Irr(W ) and a finite sequence of
essential hyperplanes H1, . . . ,Hn ∈ E such that

• χ0 = χ and χn = ψ,

• ∀i (1 ≤ i ≤ n), χi−1 and χi belong to the same Rouquier block associ-
ated with Hi.

Thanks to the above results, in order to determine the Rouquier blocks of
any cyclotomic Hecke algebra associated to a complex reflection group W , it
suffices to determine the p-blocks, and thus the Rouquier blocks, associated
with no and each essential hyperplane for W .

3 Families of characters of G(d, 1, r)

The group G(d, 1, r) is the group of all r× r monomial matrices whose non-
zero entries lie in µd. It is isomorphic to the wreath product µd oSr and its
field of definition (the field K of the previous section) is Q(ζd). In particular,
we have

• G(1, 1, r) ' Ar−1 for r ≥ 2,

• G(2, 1, r) ' Br for r ≥ 2 (G(2, 1, 1) ' µ2).

We will start by introducing some combinatorial objects which will be
necessary for the description of the Rouquier blocks of the cyclotomic Ariki-
Koike algebras, i.e., the cyclotomic Hecke algebras associated to the group
G(d, 1, r).

3.1 Combinatorics

Let λ = (λ1, λ2, . . . , λh) be a partition, i.e., a finite decreasing sequence of
positive integers:

λ1 ≥ λ2 ≥ . . . ≥ λh ≥ 1.

The integer |λ| := λ1+λ2+. . .+λh is called the size of λ. We also say that λ is
a partition of |λ|. The integer h is called the height of λ and we set hλ := h.
To each partition λ we associate its β-number, βλ = (β1, β2, . . . , βh), defined
by

β1 := h+ λ1 − 1, β2 := h+ λ2 − 2, . . . , βh := h+ λh − h.

Example 3.1 If λ = (4, 2, 2, 1), then βλ = (7, 4, 3, 1).

Let m ∈ N. The m-shifted β-number of λ is the sequence of numbers defined
by
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βλ[m] = (β1 +m,β2 +m, . . . , βh +m,m− 1,m− 2, . . . , 1, 0).

Example 3.2 If λ = (4, 2, 2, 1), then βλ[3] = (10, 7, 6, 4, 2, 1, 0).

Let d be a positive integer. A family of d partitions λ = (λ(0), λ(1), . . . , λ(d−1))
is called a d-partition. We set

h(a) := hλ(a) , β(a) := βλ(a)

and we have
λ(a) = (λ(a)

1 , λ
(a)
2 , . . . , λ

(a)

h(a)).

The integer |λ| := |λ(0)| + |λ(1)| + . . . + |λ(d−1)| is called the size of λ. We
also say that λ is a d-partition of |λ|.

Now, let us suppose that we have a given “weight system”, i.e., a family
of integers

m := (m(0),m(1), . . . ,m(d−1)).

We call (d,m)-charged height of λ the family (hc(0), hc(1), . . . , hc(d−1)), where

hc(0) := h(0) −m(0), hc(1) := h(1) −m(1), . . . , hc(d−1) := h(d−1) −m(d−1).

We define the m-charged height of λ to be the integer

hcλ := max {hc(a) | 0 ≤ a ≤ d− 1}.

Definition 3.3 The m-charged standard symbol of λ is the family of num-
bers defined by

Bcλ = (Bc(0)
λ , Bc

(1)
λ , . . . , Bc

(d−1)
λ ),

where, for all a (0 ≤ a ≤ d− 1), we have

Bc
(a)
λ := β(a)[hcλ − hc(a)].

The m-charged content of λ is the multiset

Contcλ = Bc
(0)
λ ∪Bc

(1)
λ ∪ . . . ∪Bc

(d−1)
λ .

Example 3.4 Let us take d = 2, λ = ((2, 1), (3)) and m = (−1, 2). Then

Bcλ =
(

3 1
7 3 2 1 0

)
We have Contcλ = {0, 1, 1, 2, 3, 3, 7}.

Remark: If m0 = m1 = . . . = md−1 = 0, then hcλ is called the height of λ
and Bλ := Bcλ is the ordinary standard symbol of λ.
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3.2 Ariki-Koike algebras

The generic Ariki-Koike algebra associated to G(d, 1, r) (cf. [3], [5]) is the
algebra Hd,r generated over the Laurent ring of polynomials in d + 1 inde-
terminates

Od := Z[u0, u
−1
0 , u1, u

−1
1 , . . . , ud−1, u

−1
d−1, x, x

−1]

by the elements s, t1, t2, . . . , tr−1 satisfying the relations

• st1st1 = t1st1s, stj = tjs for j 6= 1,

• tjtj+1tj = tj+1tjtj+1, titj = tjti for |i− j| > 1,

• (s− u0)(s− u1) . . . (s− ud−1) = (tj − x)(tj + 1) = 0.

For every d-partition λ = (λ(0), λ(1), . . . , λ(d−1)) of r, we consider the free
Od-module which has as basis the family of standard tableaux of λ. We can
give to this module the structure of a Hd,r-module (cf. [3], [1], [15]) and
thus obtain the Specht module Spλ associated to λ.

Set Kd := Q(u0, u1, . . . , ud−1, x) the field of fractions of Od. The KdHd,r-
module KdSpλ, obtained by extension of scalars, is absolutely irreducible
and every irreducible KdHd,r-module is isomorphic to a module of this type.
Thus Kd is a splitting field for Hd,r. We denote by χλ the (absolutely)
irreducible character of the KdHd,r-module Spλ.

Since the algebra KdHd,r is split semisimple, the Schur elements of its ir-
reducible characters belong to Od. They have been calculated independently
by Geck, Iancu, Malle in [14] and by Mathas in [23].

Theorem 3.5 Let λ be a d-partition of r with ordinary standard symbol
Bλ = (B(0)

λ , B
(1)
λ , . . . , B

(d−1)
λ ). We set B(s)

λ = (b(s)1 , b
(s)
2 , . . . , b

(s)
h ), where h is

the height of λ. Let a := r(d − 1) +
(
d
2

)(
h
2

)
and b := dh(h − 1)(2dh − d −

3)/12. Then the Schur element of the irreducible character χλ is given by
the formulae sλ = (−1)axb(x− 1)−r(u0u1 . . . ud−1)−rνλ/δλ, where

νλ =
∏

0≤s<t<d
(us − ut)h

∏
0≤s,t<d

∏
bs∈B(s)

λ

∏
1≤k≤bs

(xkus − ut),

δλ =
∏

0≤s<t<d

∏
(bs,bt)∈B(s)

λ ×B
(t)
λ

(xbsus − xbtut)
∏

0≤s<d

∏
1≤i<j≤h

(xb
(s)
i us − xb

(s)
j us).

Now let

φ :
{
uj 7→ ζjdq

mj , (0 ≤ j < d),
x 7→ qn

be a cyclotomic specialization of Hd,r. Following the description of the
Schur elements of Hd,r, we deduce (cf. [9]) that the essential hyperplanes
for G(d, 1, r) are:
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• N = 0,

• kN + Ms −Mt = 0 for all −r < k < r and 0 ≤ s < t < d such that
ζsd − ζtd is not a unit in Z[ζd].

3.3 Residues of multipartitions

Due to Proposition 2.13, the Rouquier blocks of a cyclotomic Hecke algebra
can be determined by its p-blocks, where p runs over the set of prime ideals
of ZK . The algorithm of Lyle and Mathas for the blocks of the Ariki-Koike
algebras over any field ([19]) provides us with a characterization of the p-
blocks of Hd,r, which will be used for the determination of the Rouquier
blocks associated with the essential hyperplanes for G(d, 1, r).

Let p be a prime ideal of ZK lying over a prime number p. We set

[λ] := {(i, j, a) | (0 ≤ a ≤ d− 1)(1 ≤ i ≤ h(a))(1 ≤ j ≤ λ(a)
i )}.

A node is any ordered triple (i, j, a) ∈ [λ]. If

φ :
{
uj 7→ ζjdq

mj , (0 ≤ j < d),
x 7→ qn

is a cyclotomic specialization of Hd,r, then the p-residue of the node x =
(i, j, a) with respect to φ is

resp,φ(x) =

 φ(uax(j−i)) mod p if n 6= 0,
((j − i)mod p, φ(ua) mod p) if n = 0 and φ(ub) 6≡ φ(ua) mod p for b 6= a,
φ(ua) mod p otherwise.

Let Resp,φ := {resp,φ(x) |x ∈ [λ] for some d-partition λ of r} be the set
of all possible residues. For any d-partition λ of r and f ∈ Resp,φ, we define

Cf (λ) = #{x ∈ [λ] | res(x) = f}.

We say that the d-partitions λ and µ of r are p-residue equivalent with
respect to φ if Cf (λ) = Cf (µ) for all f ∈ Resp,φ. The following result is an
immediate consequence of [19], Theorem 2.11.

Proposition 3.6 Let λ and µ be two d-partitions of r. The irreducible
characters (χλ)φ and (χµ)φ are in the same p-block of (Hd,r)φ if and only if
λ and µ are p-residue equivalent.

3.4 Rouquier blocks of the cyclotomic Ariki-Koike algebras

Theorem 3.13 of [4] gives a description of the Rouquier blocks of the cyclo-
tomic Ariki-Koike algebras in terms of charged contents of multipartitions.
However, in its proof, it is supposed that 1 − ζd always belongs to a prime
ideal of Z[ζd]. This is not correct, unless d is the power of a prime number.
Therefore, we will state here the part of the theorem that is correct.
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Theorem 3.7 Let φ be a cyclotomic specialization such that φ(x) = q. If
two irreducible characters (χλ)φ and (χµ)φ are in the same Rouquier block
of (Hd,r)φ, then Contcλ = Contcµ with respect to the weight system m =
(m0,m1, . . . ,md−1). The converse holds when d is the power of a prime
number.

Thanks to Corollary 2.15, in order to obtain the Rouquier blocks of any
cyclotomic Ariki-Koike algebra, it suffices to calculate the Rouquier blocks
associated with no and each essential hyperplane for G(d, 1, r). If

φ :
{
uj 7→ ζjdq

mj , (0 ≤ j < d),
x 7→ qn

is a cyclotomic specialization such that the (m0,m1, . . . ,md−1, n) do not
belong to any essential hyperplane for Hd,r, then all the Schur elements of
(Hd,r)φ are invertible in the Rouquier ring. Thus, we obtain that:

Proposition 3.8 The Rouquier blocks associated with no essential hyper-
plane for G(d, 1, r) are trivial.

The two results that follow are proved in detail in [9]. Here we will only
give some idea of their proofs.

Proposition 3.9 Let λ, µ be two d-partitions of r. The characters χλ and
χµ are in the same Rouquier block associated with the essential hyperplane
N = 0 if and only if |λ(a)| = |µ(a)| for all a = 0, 1, . . . , d− 1.

Proof: Let

φ :
{
uj 7→ ζjdq

mj , (0 ≤ j < d),
x 7→ 1

be a cyclotomic specialization such that ms 6= mt for all 0 ≤ s < t < d.
The Rouquier blocks of (Hd,r)φ are the Rouquier blocks associated with the
essential hyperplane N = 0.

Suppose first that (χλ)φ and (χµ)φ are in the same Rouquier block of
(Hd,r)φ. Due to Proposition 2.13, we may assume that there exists a prime
ideal p of Z[ζd] such that (χλ)φ and (χµ)φ belong to the same p-block of
(Hd,r)φ. Since the ma (0 ≤ a < d) can take any value, Proposition 3.6 yields

|λ(a)| = #{(i, j, a) | (1 ≤ i ≤ h(a)
λ )(1 ≤ j ≤ λ(a)

i )} =
= #{(i, j, a) | (1 ≤ i ≤ h(a)

µ )(1 ≤ j ≤ µ(a)
i )} = |µ(a)|

for all a = 0, 1, . . . , d− 1.
Now, let a ∈ {0, 1, . . . , d − 1}. It is enough to show that if λ and µ are

two d-partitions of r such that

|λ(a)| = |µ(a)| and λ(b) = µ(b) for all b 6= a,
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then (χλ)φ and (χµ)φ are in the same Rouquier block of (Hd,r)φ. Set
l := |λ(a)| = |µ(a)|. The generic Ariki-Koike algebra of the symmetric group
Sl specializes to the group algebra Z[Sl] when x specializes to 1 . It is well-
known that all irreducible characters of Sl belong to the same Rouquier
block of Z[Sl] (see also [24], §3, Rem.1). Due to Proposition 2.13, we may
assume, without loss of generality, that χλ(a) and χµ(a) belong to the same
p-block of Sl for some prime number p. Hence, by Proposition 3.6, λ(a) and
µ(a) are pZ-residue equivalent. If p is a prime ideal of Z[ζd] lying over p,
then, by definition of the p-residue, λ and µ are p-residue equivalent, and
thus, (χλ)φ and (χµ)φ are in the same Rouquier block of (Hd,r)φ. �

Finally, let H be an essential hyperplane for G(d, 1, r) of the form kN +
Ms−Mt = 0 and let p be a prime ideal of Z[ζd] such that ζsd − ζtd ∈ p. Then
H is a p-essential hyperplane for G(d, 1, r). Let

φH :
{
uj 7→ ζjdq

mj , (0 ≤ j < d),
x 7→ qn

be a cyclotomic specialization such that kn+ms −mt = 0 and the integers
(m0,m1, . . . ,md−1, n) belong to no other essential hyperplane for G(d, 1, r).
The Rouquier blocks of (Hd,r)φH are the Rouquier blocks associated with
the hyperplane H. Our following result gives their description.

Proposition 3.10 Let λ, µ be two distinct d-partitions of r. The irreducible
characters (χλ)φH and (χµ)φH are in the same Rouquier block of (Hd,r)φH
if and only if the following conditions are satisfied:

1. We have λ(a) = µ(a) for all a /∈ {s, t}.

2. If λst := (λ(s), λ(t)) and µst := (µ(s), µ(t)), then Contcλst = Contcµst
with respect to the weight system (0, k).

Proof: We can assume, without loss of generality, that n = 1. We can
also assume that ms = 0 and mt = k.

Suppose that (χλ)φH and (χµ)φH belong to the same Rouquier block of
(Hd,r)φH . Due to Theorem 3.7, we have Contcλ = Contcµ with respect to
the weight system m = (m0,m1, . . . ,md−1). Since the ma, a /∈ {s, t} can
take any value (as long as they don’t belong to another essential hyperplane),
the equality Contcλ = Contcµ yields conditions 1 and 2.

Now let us suppose that the conditions 1 and 2 are satisfied. Set l :=
|λst|. Due to the first condition, we must have |µst| = l. Let H2,l be the
generic Ariki-Koike algebra associated to the group G(2, 1, l) defined over
the Laurent polynomial ring

Z[U0, U
−1
0 , U1, U

−1
1 , X,X−1].
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Let us consider the cyclotomic specialization

ϑ : U0 7→ 1, U1 7→ −qk, X 7→ q.

Due to Theorem 3.7, the condition 2 implies that the characters (χλst)ϑ and
(χµst)ϑ belong to the same Rouquier block of (H2,l)ϑ. Therefore, we must
have that kN +M0 −M1 = 0 is a 2Z-essential hyperplane for G(2, 1, l) and
that (χµst)ϑ and (χλst)ϑ belong to the same 2Z-block of (H2,l)ϑ. By Propo-
sition 3.6, λst and µst are 2Z-residue equivalent. Following the definition of
the p-residue, we deduce that (χλ)φH and (χµ)φH belong to the same p-block
and hence to the same Rouquier block of (Hd,r)φH . �

The following result is a corollary of the above proposition. However,
it can also be obtained independently using the Morita equivalences es-
tablished by Theorem 1.1 of [12], according to which the algebra (Hd,r)φH
defined over the Rouquier ring is Morita equivalent to the algebra⊕

n1, . . . , nd−1 ≥ 0
n1 + . . . + nd−1 = r

(H2,n1)φH ⊗H(Sn2)φH ⊗ . . .⊗H(Snd−1
)φH .

Corollary 3.11 Let λ, µ be two distinct d-partitions of r. The irreducible
characters (χλ)φH and (χµ)φH are in the same Rouquier block of (Hd,r)φH
if and only if the following conditions are satisfied:

1. We have λ(a) = µ(a) for all a /∈ {s, t}.

2. If λst := (λ(s), λ(t)), µst := (µ(s), µ(t)) and l := |λst| = |µst|, then the
characters (χλst)ϑ and (χµst)ϑ belong to the same Rouquier block of
the cyclotomic Ariki-Koike algebra of G(2, 1, l) obtained via the spe-
cialization

ϑ : U0 7→ qms , U1 7→ −qmt , X 7→ qn.

Example 3.12 LetW := G(3, 1, 2). The irreducible characters ofW are parametrized
by the 3-partitions of 2. These are:

λ(2),0 = ((2), ∅, ∅), λ(2),1 = (∅, (2), ∅), λ(2),2 = (∅, ∅, (2)),
λ(1,1),0 = ((1, 1), ∅, ∅), λ(1,1),1 = (∅, (1, 1), ∅), λ(1,1),2 = (∅, ∅, (1, 1)),
λ∅,0 = (∅, (1), (1)), λ∅,1 = ((1), ∅, (1)), λ∅,2 = ((1), (1), ∅).

The generic Ariki-Koike algebra associated to W is the algebra H3,2 generated over
the Laurent polynomial ring in 4 indeterminates

Z[u0, u
−1
0 , u1, u

−1
1 , u2, u

−1
2 , x, x−1]

by the elements s and t satisfying the relations

• stst = tsts,

• (s− u0)(s− u1)(s− u2) = (t− x)(t + 1) = 0.
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Let

φ :
{
uj 7→ ζj3q

mj , (0 ≤ j ≤ 2),
x 7→ qn

be a cyclotomic specialization for H3,2. The essential hyperplanes for W are:

• N = 0.

• kN +M0 −M1 = 0 for k ∈ {−1, 0, 1}.

• kN +M0 −M2 = 0 for k ∈ {−1, 0, 1}.

• kN +M1 −M2 = 0 for k ∈ {−1, 0, 1}.

Let us take m0 := 0, m1 := 0, m2 := 5 and n := 1. These integers belong only to
the essential hyperplane M0−M1 = 0. Following Proposition 3.10, two irreducible
characters (χλ)φ, (χµ)φ are in the same Rouquier block of (H2,3)φ if and only if

1. We have λ(2) = µ(2).

2. If λ01 := (λ(0), λ(1)) and µ01 := (µ(0), µ(1)), then Contcλ01 = Contcµ01 with
respect to the weight system (0, 0).

The first condition yields that the irreducible characters corresponding to the par-
titions λ(2),2 and λ(1,1),2 are singletons. Moreover, we have

Bλ01
(2),0

=
(

2
0

)
, Bλ01

(2),1
=
(

0
2

)
,

Bλ01
(1,1),0

=
(

2 1
1 0

)
, Bλ01

(1,1),1
=
(

1 0
2 1

)
,

Bλ01
∅,0

=
(

0
1

)
, Bλ01

∅,1
=
(

1
0

)
, Bλ01

∅,2
=
(

1
1

)
.

Hence, the Rouquier blocks of (H3,2)φ are:

{λ(2),0, λ(2),1}, {λ(2),2}, {λ(1,1),0, λ(1,1),1}, {λ(1,1),2}, {λ∅,0, λ∅,1}, {λ∅,2}.

4 Families of characters of G(de, e, r)

Let d, e, r be three positive integers. The group G(de, e, r) is the group of all
r× r monomial matrices with non-zero entries in µde such that the product
of all non-zero entries lies in µd. In particular, we have

• G(2, 2, r) ' Dr for r ≥ 4,

• G(e, e, 2) ' I(e), where I(e) denotes the dihedral group of order 2e.

The algorithm of Kim for the determination of the Rouquier blocks for
the group G(de, e, r) (cf.[17]) is not entirely correct. In [10] we give the
correct algorithm and we study separately the case when r = 2 and e is
even, which had never been studied before.
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4.1 Clifford theory and the Hecke algebras of G(de, e, r)

Let W be a complex reflection group and let us denote by H(W ) its generic
Hecke algebra. Let W ′ be another complex reflection group such that, for
a certain choice parameters, H(W ) becomes the twisted symmetric algebra
of a finite cyclic group G over the subalgebra H(W ′) (for the definition, see
[8], Definition 2.3.6). Then, if we know the blocks of H(W ), we can obtain
the blocks of H(W ′) with the use of a generalization of some classic results,
known as “Clifford theory”, to the case of twisted symmetric algebras of
finite groups (cf., for example, [11], [8] §2.3). Thanks to a result by Ariki
([2], Proposition 1.16), we obtain that

1. the generic Hecke algebra of G(de, 1, r) specializes to the twisted sym-
metric algebra of the cyclic group µe over the generic Hecke algebra of
G(de, e, r) in the case where r > 2 or r = 2 and e is odd.

2. the generic Hecke algebra of G(de, 2, 2) specializes to the twisted sym-
metric algebra of the cyclic group µe/2 over the generic Hecke algebra
of G(de, e, 2) in the case where e is even.

In the first case, we can obtain the Rouquier blocks of the cyclotomic
Hecke algebras associated to G(de, e, r) from the Rouquier blocks of the
cyclotomic Ariki-Koike algebras, already determined in the previous section.
In the second case, we need to know the Rouquier blocks of the cyclotomic
Hecke algebras of G(de, 2, 2). These have been explicitly calculated in [10]
§4.1, using again the theory of essential hyperplanes. For the results of
the application of Clifford Theory in both cases, the reader should refer to
Theorems 3.10 and 4.8 of [10].
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