The symmetrising trace conjecture for Hecke algebras
(joint work with C. Boura, E. Chavli & K. Karvounis)

Maria Chlouveraki
Université de Versailles
Complex reflection groups

Let V be a finite dimensional complex vector space.
Complex reflection groups

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of $\text{GL}(V)$ generated by _pseudo-reflections_, that is, non-trivial elements that fix a hyperplane pointwise.
Complex reflection groups

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of $GL(V)$ generated by pseudo-reflections, that is, non-trivial elements that fix a hyperplane pointwise.

Theorem (Shephard–Todd)

Let $W \subset GL(V)$ be an irreducible complex reflection group (i.e., W acts irreducibly on V). Then one of the following assertions is true:

- $W \cong G(de, e, r)$, where $G(de, e, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a d-th root of unity.

- $W \cong G_n$ for some $n = 4, \ldots, 37$.

We define the rank of W to be the dimension of V.
Complex reflection groups

Let V be a finite dimensional complex vector space. A complex reflection group is a finite subgroup of $\text{GL}(V)$ generated by pseudo-reflections, that is, non-trivial elements that fix a hyperplane pointwise.

Theorem (Shephard–Todd)

Let $W \subset \text{GL}(V)$ be an irreducible complex reflection group (i.e., W acts irreducibly on V). Then one of the following assertions is true:

- $W \cong G(de, e, r)$, where $G(de, e, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a d-th root of unity.
- $W \cong G_n$ for some $n = 4, \ldots, 37$.

We define the rank of W to be the dimension of V.
Braid groups and Hecke algebras

Let W be a complex reflection group.
Braid groups and Hecke algebras

Let \(W \) be a complex reflection group.

\[
G_4 = \langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \rangle
\]
Braid groups and Hecke algebras

Let W be a complex reflection group.

$$G_4 = \langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_4) = \langle s, t \mid sts = tst \rangle$$
Braid groups and Hecke algebras

Let \(\mathcal{W} \) be a complex reflection group.

\[G_4 = \langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_4) = \langle s, t \mid sts = tst \rangle \]

\[\mathcal{H}(G_4) = \langle s, t \mid sts = tst, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \rangle \]

over \(R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}] \).
Braid groups and Hecke algebras

Let W be a complex reflection group.

\[G_4 = \langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \rangle \quad \text{and} \quad B(G_4) = \langle s, t \mid sts = tst \rangle \]

\[H(G_4) = \langle s, t \mid sts = tst, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \rangle \]

over $R_{G_4} = \mathbb{Z}[a, b, c^\pm 1]$.

\[G_5 = \langle s, t \mid stst = tstst, \ s^3 = 1, \ t^3 = 1 \rangle \]
Braid groups and Hecke algebras

Let W be a complex reflection group.

$G_4 = \langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_4) = \langle s, t \mid sts = tst \rangle$

$\mathcal{H}(G_4) = \langle s, t \mid sts = tst, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \rangle$

over $R_{G_4} = \mathbb{Z}[a, b, c]_{\pm 1}$.

$G_5 = \langle s, t \mid stst = tsts, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_5) = \langle s, t \mid stst = tsts \rangle$
Braid groups and Hecke algebras

Let W be a complex reflection group.

$G_4 = \langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_4) = \langle s, t \mid sts = tst \rangle$

$\mathcal{H}(G_4) = \langle s, t \mid sts = tst, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \rangle$

over $R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}]$.

$G_5 = \langle s, t \mid stst = tsts, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_5) = \langle s, t \mid stst = tsts \rangle$

$\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$

over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.
Braid groups and Hecke algebras

Let W be a complex reflection group.

$G_4 = \langle s, t \mid stst = tsts, \ s^3 = 1, \ t^3 = 1 \rangle$ \quad $B(G_4) = \langle s, t \mid stst = tsts \rangle$

$\mathcal{H}(G_4) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \rangle$

over $R_{G_4} = \mathbb{Z}[a, b, c^{\pm1}]$.

$G_5 = \langle s, t \mid stst = tsts, \ s^3 = 1, \ t^3 = 1 \rangle$ \quad $B(G_5) = \langle s, t \mid stst = tsts \rangle$

$\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$

over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm1}, d, e, f^{\pm1}]$.

- We have $Z(B(W)) = \langle \zeta_W \rangle$.

Braid groups and Hecke algebras

Let W be a complex reflection group.

$G_4 = \langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_4) = \langle s, t \mid sts = tst \rangle$

$\mathcal{H}(G_4) = \langle s, t \mid sts = tst, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \rangle$

over $R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}]$.

$G_5 = \langle s, t \mid stst = tsts, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_5) = \langle s, t \mid stst = tsts \rangle$

$\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$

over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

- We have $Z(B(W)) = \langle \zeta_W \rangle$. In the examples, $\zeta_{G_4} = ststst$ and $\zeta_{G_5} = stst$.
Braid groups and Hecke algebras

Let W be a complex reflection group.

\[
G_4 = \langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_4) = \langle s, t \mid sts = tst \rangle
\]
\[
\mathcal{H}(G_4) = \langle s, t \mid sts = tst, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \rangle
\]
over $R_{G_4} = \mathbb{Z}[a, b, c^{\pm1}]$.

\[
G_5 = \langle s, t \mid stst = tsts, \ s^3 = 1, \ t^3 = 1 \rangle \quad B(G_5) = \langle s, t \mid stst = tsts \rangle
\]
\[
\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle
\]
over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm1}, d, e, f^{\pm1}]$.

- We have $Z(B(W)) = \langle \zeta_W \rangle$. In the examples, $\zeta_{G_4} = ststst$ and $\zeta_{G_5} = stst$.
- We have $B(W) \twoheadrightarrow \mathcal{H}(W)$, $\zeta_W \mapsto z_W$.
The Broué–Malle–Rouquier freeness conjecture
The Broué–Malle–Rouquier freeness conjecture

<table>
<thead>
<tr>
<th>Theorem (since October)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The algebra $\mathcal{H}(W)$ is a free R_W-module of rank $</td>
</tr>
</tbody>
</table>
The Broué–Malle–Rouquier freeness conjecture

Theorem (since October)

The algebra $\mathcal{H}(W)$ is a free R_W-module of rank $|W|$.

It has been proved for:

- the real reflection groups by Bourbaki;
- the complex reflection groups $G(de, e, r)$ by Ariki–Koike, Broué–Malle, Ariki;
- the group G_4 by Broué–Malle, Funar, Marin;
- the group G_{12} by Marin–Pfeiffer;
- the groups G_4, \ldots, G_{16} by Chavli;
- the groups G_{17}, G_{18}, G_{19} by Tsuchioka;
- the groups G_{20}, G_{21} by Marin;
- the groups G_{22}, \ldots, G_{37} by Marin, Marin–Pfeiffer.
The Broué–Malle–Michel symmetrising trace conjecture

Let B be an R_W-basis for $H(W)$. Conjecture

There exists a linear map $\tau : H(W) \to R_W$ that satisfies the following conditions:

1. τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j) b_i, b_j \in B)$ is symmetric and invertible over R_W.

2. When $H(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_1 w$ for all $w \in W$.

3. τ satisfies an extra condition, which makes it unique.

It has been proved for:

- the real reflection groups by Bourbaki;
- the complex reflection groups $G(\text{de}, e, r)$ by Bremke–Malle, Malle–Mathas;
- the groups $G_{4, 12, 22, 24}$ by Malle–Michel (G_4 also by Marin–Wagner).
The Broué–Malle–Michel symmetrising trace conjecture

Let \mathcal{B} be an R_W-basis for $\mathcal{H}(W)$.
The Broué–Malle–Michel symmetrising trace conjecture

Let \mathcal{B} be an R_W-basis for $\mathcal{H}(W)$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

1. τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j))_{b_i, b_j \in \mathcal{B}}$ is symmetric and invertible over R_W.

It has been proved for:
- the real reflection groups by Bourbaki;
- the complex reflection groups $G(d, e, r)$ by Bremke–Malle, Malle–Mathas;
- the groups $G_4, G_{12}, G_{22}, G_{24}$ by Malle–Michel (G_4 also by Marin–Wagner).
The Broué–Malle–Michel symmetrising trace conjecture

Let \mathcal{B} be an R_W-basis for $\mathcal{H}(W)$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

1. τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W.

2. When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.
The Broué–Malle–Michel symmetrising trace conjecture

Let \mathcal{B} be an R_W-basis for $\mathcal{H}(W)$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

1. τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W.

2. When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.

3. τ satisfies an extra condition, which makes it unique.
The Broué–Malle–Michel symmetrising trace conjecture

Let \mathcal{B} be an R_W-basis for $\mathcal{H}(W)$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \rightarrow R_W$ that satisfies the following conditions:

1. τ is a symmetrising trace, that is, the matrix $A := (\tau(b_ib_j)_{b_i,b_j\in\mathcal{B}})$ is symmetric and invertible over R_W.

2. When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.

3. τ satisfies an extra condition, which makes it unique.

It has been proved for:

- the real reflection groups by Bourbaki;
- the complex reflection groups $G(de, e, r)$ by Bremke–Malle, Malle–Mathas;
- the groups $G_4, G_{12}, G_{22}, G_{24}$ by Malle–Michel (G_4 also by Marin–Wagner).
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $H(G_n)$ and define a linear map τ on $H(G_n)$ by setting $\tau(b) := \delta_1 b$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = W$ when $H(W)$ specialises to the group algebra of W.

By construction, B_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in H(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of B_n.

STEP 2: Calculate the matrix $A = (\tau(b_i b_j) | b_i, b_j \in B_n)$. Check whether A is symmetric and invertible over $\mathbb{R}W$. If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $H(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture! If not, go back to **STEP 1** and modify B_n accordingly.

STEP 3: Check that the extra third condition holds.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in B_n$.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_1 b$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W.

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in B_n})$. Check whether A is symmetric and invertible over \mathbb{R}. If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture! If not, go back to **STEP 1** and modify B_n accordingly.

STEP 3: Check that the extra third condition holds.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, B_n satisfies the second condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture! If not, go back to **STEP 1** and modify B_n accordingly.

STEP 3: Check that the extra third condition holds.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_1 b$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = \mathcal{W}$ when $\mathcal{H}(\mathcal{W})$ specialises to the group algebra of \mathcal{W}. By construction, B_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of B_n.

If not, go back to **STEP 1** and modify B_n accordingly.

STEP 2: Calculate the matrix $A = (\tau(b_i b_j))_{b_i, b_j \in B_n}$. Check whether A is symmetric and invertible over \mathbb{R}. If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

STEP 3: Check that the extra third condition holds.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, B_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of B_n.

STEP 2: Calculate the matrix $A = (\tau(b_ib_j)_{b_i,b_j \in B_n})$.

Check whether A is symmetric and invertible over \mathbb{R}. If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture! If not, go back to **STEP 1** and modify B_n accordingly.

STEP 3: Check that the extra third condition holds.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, B_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of B_n.

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in B_n})$. Check whether A is symmetric and invertible over R_W.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, B_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of B_n.

STEP 2: Calculate the matrix $A = (\tau(b_ib_j)_{b_i, b_j \in B_n})$. Check whether A is symmetric and invertible over R_W. If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_1 b$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, B_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of B_n.

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i,b_j \in B_n})$. Check whether A is symmetric and invertible over R_W. If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n.

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W. If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify \mathcal{B}_n accordingly.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture! If not, go back to STEP 1 and modify \mathcal{B}_n accordingly.
The idea of the algorithm for G_4, \ldots, G_8

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \ldots, 8\}$. Take a basis B_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in B_n$. We must have $1 \in B_n$ and $B_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, B_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of B_n.

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in B_n})$. Check whether A is symmetric and invertible over R_W. If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n = 4, \ldots, 16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

If not, go back to **STEP 1** and modify B_n accordingly.

STEP 3: Check that the extra third condition holds.
The C++ algorithm

For any $b_i, b_j \in B_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of B_n.

Running the C++ program takes about 1 hour on an Intel Core i5 CPU.
The C++ algorithm

For any \(b_i, b_j \in B_n \), our C++ program expresses \(b_i b_j \) as a linear combination of the elements of \(B_n \). Then \(\tau(b_i b_j) \) is the coefficient of 1 in this linear combination.
The C++ algorithm

For any \(b_i, b_j \in B_n \), our C++ program expresses \(b_i b_j \) as a linear combination of the elements of \(B_n \). Then \(\tau(b_i b_j) \) is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

I1. The basis \(B_n \).

I2. The braid, positive and inverse Hecke relations (for example, \(s^{-1} = c^{-1}s^2 - ac^{-1}s - bc^{-1} \)).

I3. The “special cases”: these are some equalities computed by hand which express a given element of \(\mathcal{H}(G_n) \) as a sum of other elements in \(\mathcal{H}(G_n) \).
The C++ algorithm

For any $b_i, b_j \in B_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of B_n. Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

I1. The basis B_n.

I2. The braid, positive and inverse Hecke relations
(for example, $s^{-1} = c^{-1}s^2 - ac^{-1}s - bc^{-1}$).

I3. The “special cases”: these are some equalities computed by hand which express a given element of $H(G_n)$ as a sum of other elements in $H(G_n)$.

The case of G_4

We have $B_4 = \{1, s, s^2, t^2, t, t^2 s, ts, t^2 s^2, ts^2, st^2, st, st^2 s, sts, st^2 s^2, sts^2, s^2 t^2, s^2 t, s^2 t^2 s, s^2 ts, s^2 t^2 s^2, s^2 ts^2, stst, ststst, stststst\}$.

Running the C++ program takes about 1 hour on an Intel Core i5 CPU.
The SAGE algorithm

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n.

There exists a set E_n with $1, s, t \in E_n$ such that $B_n = \{ z_k e | e \in E_n, k = 0, 1, \ldots, |Z(G_n)| - 1 \}$. We have $E_n \leftrightarrow G_n / Z(G_n) \sim \{ A_4 \text{ for } n = 5, 6, 7; S_4 \text{ for } n = 8 \}$.

The curious case of G_7: 3 elements have to be replaced!

The inputs of the SAGE algorithm are the coefficients of the following elements when written as linear combinations of the elements of B_n:

I1. $s b_j$ for all $b_j \in B_n$.

I2. $t b_j$ for all $b_j \in B_n$.

I3. $z | Z(G_n) | = z \cdot z | Z(G_n) | - 1$.
The SAGE algorithm

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n.

Set $z := z_{G_n}$.
The SAGE algorithm

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n.

Set $z := z_{G_n}$. There exists a set E_n with $1, s, t \in E_n$ such that

$$B_n = \{z^k e \mid e \in E_n, \; k = 0, 1, \ldots, |Z(G_n)| - 1\}.$$
The SAGE algorithm

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n.

Set $z := z_{G_n}$. There exists a set E_n with $1, s, t \in E_n$ such that

$$B_n = \{z^k e \mid e \in E_n, \ k = 0, 1, \ldots, |Z(G_n)| - 1\}.$$

We have $E_n \leftrightarrow G_n/Z(G_n) \cong \begin{cases} \mathfrak{A}_4 & \text{for } n = 5, 6, 7; \\ \mathfrak{S}_4 & \text{for } n = 8. \end{cases}$
The SAGE algorithm

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n.

Set $z := z_{G_n}$. There exists a set \mathcal{E}_n with $1, s, t \in \mathcal{E}_n$ such that

$$B_n = \{z^k e \mid e \in \mathcal{E}_n, k = 0, 1, \ldots, |Z(G_n)| - 1\}.$$

We have $\mathcal{E}_n \leftrightarrow G_n/Z(G_n) \cong \begin{cases} A_4 & \text{for } n = 5, 6, 7; \\ S_4 & \text{for } n = 8. \end{cases}$

The curious case of G_7

3 elements have to be replaced!
The SAGE algorithm

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n.

Set $z := z_{G_n}$. There exists a set \mathcal{E}_n with $1, s, t \in \mathcal{E}_n$ such that

$$B_n = \{z^k e \mid e \in \mathcal{E}_n, k = 0, 1, \ldots, |Z(G_n)| - 1\}.$$

We have $\mathcal{E}_n \leftrightarrow G_n/Z(G_n) \cong \begin{cases} A_4 & \text{for } n = 5, 6, 7; \\ S_4 & \text{for } n = 8. \end{cases}$

The curious case of G_7

3 elements have to be replaced!

The inputs of the SAGE algorithm are the coefficients of the following elements when written as linear combinations of the elements of B_n:

1. sb_j for all $b_j \in B_n$.
2. tb_j for all $b_j \in B_n$.
3. $z|Z(G_n)| = z \cdot z|Z(G_n)|^{-1}$.
The case of G_5

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$.
The case of G_5

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\}$
The case of G_5

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2 \ldots, b_{12}\}$.
The case of G_5

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$.
- $E_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2 \ldots, b_{12}\}$.
- $z = stst$.
The case of G_5

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2 \ldots, b_{12}\}$.
- $z = stst$.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \ldots, 12, \ k = 0, 1, \ldots, 5\}$.
The case of G_5

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2 t, st^2, s^2 t^2, t^{-1} s, t^{-1} st, t^{-1} st^2\} = \{b_1, b_2 \ldots, b_{12}\}$.
- $z = stst$.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \ldots, 12, \ k = 0, 1, \ldots, 5\}$.

We set $b_{12k+m} := z^k b_m$.
The case of G_5

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$.
- $E_5 = \{1, s, s^2, t, t^2, st, s^2 t, st^2, s^2 t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2 \ldots, b_{12}\}$.
- $z = stst$.
- $B_5 = \{z^k b_m \mid m = 1, 2, \ldots, 12, \ k = 0, 1, \ldots, 5\}$.

We set $b_{12k+m} := z^k b_m$. We observe that we have:
The case of G_5

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$.
- $E_5 = \{1, s, s^2, t, t^2, st, s^2t, stt, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2 \ldots, b_{12}\}.$
- $z = stst.$
- $B_5 = \{z^k b_m \mid m = 1, 2, \ldots, 12, \ k = 0, 1, \ldots, 5\}.$

We set $b_{12k+m} := z^k b_m$. We observe that we have:

\[
\begin{align*}
b_{12k+2} &= b_{12k+1} \cdot s, & b_{12k+8} &= b_{12k+6} \cdot t, \\
b_{12k+3} &= b_{12k+2} \cdot s, & b_{12k+9} &= b_{12k+7} \cdot t, \\
b_{12k+4} &= b_{12k+1} \cdot t, & b_{12k+10} &= f^{-1}(b_{12k+5} - db_{12k+4} - eb_{12k+1}) \cdot s, \\
b_{12k+5} &= b_{12k+4} \cdot t, & b_{12k+11} &= b_{12k+10} \cdot t, \\
b_{12k+6} &= b_{12k+2} \cdot t, & b_{12k+12} &= b_{12k+11} \cdot t. \\
b_{12k+7} &= b_{12k+3} \cdot t
\end{align*}
\]
The case of G_5

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j, tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of B_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.
The case of G_5

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j, tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of B_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let $sb_j = \sum_l \lambda^s_{j,l} b_l$, $tb_j = \sum_l \lambda^t_{j,l} b_l$ and $z^6 = \sum_l \mu_l b_l$.
The case of G_5

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j, tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of B_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm1}, d, e, f^{\pm1}]$.

Let $sb_j = \sum_l \lambda_{j,l}^s b_l$, $tb_j = \sum_l \lambda_{j,l}^t b_l$ and $z^6 = \sum_l \mu_l b_l$.

Examples

- $\tau(b_{12k+4} b_j) = \tau(b_{12k+1} tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1} b_l)$.
The case of \(G_5 \)

Let \(j \in \{1, \ldots, 72\} \). Using the C++ program, we have expressed \(sb_j \), \(tb_j \) and \(z^6 = b_{37}^2 \) as linear combinations of the elements of \(B_5 \) with coefficients in \(\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}] \).

Let \(sb_j = \sum_l \lambda_{j,l}^s b_l \), \(tb_j = \sum_l \lambda_{j,l}^t b_l \) and \(z^6 = \sum_l \mu_l b_l \).

Examples

- \(\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1}b_l) \).
- \(\tau(b_{12k+10}b_j) = f^{-1} \sum_l \lambda_{j,l}^s (\tau(b_{12k+5}b_l) - d \tau(b_{12k+4}b_l) - e \tau(b_{12k+1}b_l)) \).
The case of G_5

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j, tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of B_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let $sb_j = \sum_l \lambda^s_{j,l} b_l$, $tb_j = \sum_l \lambda^t_{j,l} b_l$ and $z^6 = \sum_l \mu_l b_l$.

Examples

- $\tau(b_{12k+4} b_j) = \tau(b_{12k+1} tb_j) = \sum_l \lambda^t_{j,l} \tau(b_{12k+1} b_l)$.
- $\tau(b_{12k+10} b_j) = f^{-1} \sum_l \lambda^s_{j,l} (\tau(b_{12k+5} b_l) - d \tau(b_{12k+4} b_l) - e \tau(b_{12k+1} b_l))$.

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:
The case of G_5

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j, tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of B_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let $sb_j = \sum_l \lambda_{j,l}^s b_l$, $tb_j = \sum_l \lambda_{j,l}^t b_l$ and $z^6 = \sum_l \mu_l b_l$.

Examples

- $\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1}b_l)$.
- $\tau(b_{12k+10}b_j) = f^{-1} \sum_l \lambda_{j,l}^s (\tau(b_{12k+5}b_l) - d\tau(b_{12k+4}b_l) - e\tau(b_{12k+1}b_l))$.

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leq j \leq 12(6 - k)$, then we have $b_{12k+1}b_j \in B_5$, whence $\tau(b_{12k+1}b_j) = 0$.
The case of G_5

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j, tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of B_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let $sb_j = \sum_l \lambda_{j,l}^s b_l$, $tb_j = \sum_l \lambda_{j,l}^t b_l$ and $z^6 = \sum_l \mu_l b_l$.

Examples

- $\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1}b_l)$.
- $\tau(b_{12k+10}b_j) = f^{-1} \sum_l \lambda_{j,l}^s (\tau(b_{12k+5}b_l) - d\tau(b_{12k+4}b_l) - e\tau(b_{12k+1}b_l))$.

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leq j \leq 12(6 - k)$, then we have $b_{12k+1}b_j \in B_5$, whence $\tau(b_{12k+1}b_j) = 0$.
- If $12(6 - k) < j \leq 72$, then $b_{12k+1}b_j = z^k b_j = z^{k-6} b_j z^6 = b_{12k+j-72} \cdot z^6$.
The case of G_5

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j, tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let $sb_j = \sum_l \lambda^s_{j,l} b_l$, $tb_j = \sum_l \lambda^t_{j,l} b_l$ and $z^6 = \sum_l \mu_l b_l$.

Examples

- $\tau(b_{12k+4} b_j) = \tau(b_{12k+1} tb_j) = \sum_l \lambda^t_{j,l} \tau(b_{12k+1} b_l)$.
- $\tau(b_{12k+10} b_j) = f^{-1} \sum_l \lambda^s_{j,l} (\tau(b_{12k+5} b_l) - d \tau(b_{12k+4} b_l) - e \tau(b_{12k+1} b_l))$.

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leq j \leq 12(6 - k)$, then we have $b_{12k+1} b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1} b_j) = 0$.
- If $12(6 - k) < j \leq 72$, then $b_{12k+1} b_j = z^k b_j = z^{k-6} b_j z^6 = b_{12k+j-72} \cdot z^6$. We get

$$\tau(b_{12k+1} b_j) = \tau(b_{12k+j-72} \cdot z^6) = \sum_l \mu_l \tau(b_{12k+j-72} b_l).$$
The GAP algorithm

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple.
The GAP algorithm

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \text{Irr}(K\mathcal{H}(W))} \frac{1}{s_{\chi}} \chi$$

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\tilde{\tau} = \tau$ by showing that $\tilde{\tau}(b) = \delta_{1b}$ for all $b \in B_n$.

STEP 3: Calculate the entries of A using $\tilde{\tau}$. We already know that A is symmetric, so we only need to calculate the entries in and above the diagonal.

Our program worked for G_4 and G_6. It produced A for G_8, but could not calculate $\det(A)$. It could not even establish STEP 2 for G_5 and G_7.
The GAP algorithm

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \text{Irr}(K\mathcal{H}(W))} \frac{1}{s_\chi} \chi$$

where $s_\chi \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ.

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.
The GAP algorithm

Let \(W \) be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field \(K \) over which \(\mathcal{H}(W) \) is split semisimple. Then

\[
\tau = \sum_{\chi \in \text{Irr}(K\mathcal{H}(W))} \frac{1}{s_\chi} \chi
\]

(1)

where \(s_\chi \in K \) denotes the Schur element of \(K\mathcal{H}(W) \) associated with \(\chi \).

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define \(\tilde{\tau} \) as the RHS of (1).
The GAP algorithm

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \text{Irr}(K\mathcal{H}(W))} \frac{1}{s_{\chi}} \chi$$

(1)

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ.

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\tilde{\tau} = \tau$ by showing that $\tilde{\tau}(b) = \delta_{1b}$ for all $b \in B_n$.

The GAP algorithm

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \text{Irr}(K \mathcal{H}(W))} \frac{1}{s_\chi} \chi$$

(1)

where $s_\chi \in K$ denotes the Schur element of $K \mathcal{H}(W)$ associated with χ.

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\tilde{\tau} = \tau$ by showing that $\tilde{\tau}(b) = \delta_{1b}$ for all $b \in B_n$.

STEP 3: Calculate the entries of A using $\tilde{\tau}$. We already know that A is symmetric, so we only need to calculate the entries in and above the diagonal.
The GAP algorithm

Let \mathcal{W} be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field \mathcal{K} over which $\mathcal{H}(\mathcal{W})$ is split semisimple. Then

$$\tau = \sum_{\chi \in \text{Irr}(\mathcal{K}\mathcal{H}(\mathcal{W}))} \frac{1}{s_{\chi}} \chi$$ \hspace{1cm} (1)$$

where $s_{\chi} \in \mathcal{K}$ denotes the Schur element of $\mathcal{K}\mathcal{H}(\mathcal{W})$ associated with χ.

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\tilde{\tau} = \tau$ by showing that $\tilde{\tau}(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$.

STEP 3: Calculate the entries of A using $\tilde{\tau}$. We already know that A is symmetric, so we only need to calculate the entries in and above the diagonal.

Our program worked for G_4 and G_6. It produced A for G_8, but could not calculate $\det(A)$. It could not even establish STEP 2 for G_5 and G_7.
The extra condition

Malle and Michel have shown that, since

1. each element of B_n corresponds to a distinct element of G_n
 (that is, $B_n = \{ T_w \mid w \in G_n \}$),

\[\tau(b) = \delta_1 b \text{ for all } b \in B_n, \]

and B_n is a basis of $H(G_n)$ as an R_{G_n}-module,

the extra condition of the BMM symmetrising trace conjecture translates as:

\[\tau(z \mid Z(G_n) \mid b - 1) = 0 \text{ for all } b \in B_n \setminus \{1\}. \]

(2)

This is equivalent to

\[\sum_{\chi \in \text{Irr}(KH(G_n))} \omega_{\chi}(z \mid Z(G_n)) s_{\chi}(\chi(b - 1)) = 0 \text{ for all } b \in B_n \setminus \{1\}. \]

(3)

We used GAP to prove Formula (3) for G_4, G_6, and G_8.

We directly proved Formula (2) for G_5 and G_7, by expressing $\tau(z \mid Z(G_n) \mid b - 1)$ as a linear combination of entries of the matrix A.

\[A \]
The extra condition

Malle and Michel have shown that, since

1. each element of \(B_n \) corresponds to a distinct element of \(G_n \) (that is, \(B_n = \{ T_w \mid w \in G_n \} \)),

2. \(\tau(b) = \delta_{1b} \) for all \(b \in B_n \), and

This is equivalent to

\[
\sum_{\chi \in \text{Irr}(KH(G_n))} \omega_{\chi}(z|Z(G_n)|b - 1) s_{\chi}\chi(b - 1) = 0 \quad \text{for all } b \in B_n \backslash \{1\}.
\]
The extra condition

Malle and Michel have shown that, since

1. each element of B_n corresponds to a distinct element of G_n (that is, $B_n = \{ T_w \mid w \in G_n \}$),
2. $\tau(b) = \delta_{1b}$ for all $b \in B_n$, and
3. B_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n}-module,
The extra condition

Malle and Michel have shown that, since

1. each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ Tw \mid w \in G_n \}$),

2. $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and

3. \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n}-module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau \left(z^{\mid Z(G_n) \mid} b^{-1} \right) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \quad (2)$$
The extra condition

Malle and Michel have shown that, since

1. each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{T_w \mid w \in G_n\}$),
2. $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
3. \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n}-module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z \mid Z(G_n) \mid b^{-1}\right) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \quad (2)$$

This is equivalent to

$$\sum_{\chi \in \text{Irr}(K \mathcal{H}(G_n))} \frac{\omega_{\chi}(z \mid Z(G_n) \mid)}{s_{\chi}} \chi(b^{-1}) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \quad (3)$$
The extra condition

Malle and Michel have shown that, since

1. each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w \mid w \in G_n \}$),
2. $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
3. \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n}-module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z|Z(G_n)|^{-1} b^{-1} \right) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \quad (2)$$

This is equivalent to

$$\sum_{\chi \in \text{Irr}(K\mathcal{H}(G_n))} \frac{\omega_{\chi}(z|Z(G_n)|)}{s_{\chi}} \chi(b^{-1}) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \quad (3)$$

- We used GAP to prove Formula (3) for G_4, G_6 and G_8.
The extra condition

Malle and Michel have shown that, since

1. each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w | w \in G_n \}$),
2. $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
3. \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n}-module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau \left(z^{\mid Z(G_n) \mid} b^{-1} \right) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \quad (2)$$

This is equivalent to

$$\sum_{\chi \in \text{Irr}(K\mathcal{H}(G_n))} \frac{\omega_{\chi}(z^{\mid Z(G_n) \mid})}{s_{\chi}} \chi(b^{-1}) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \quad (3)$$

- We used GAP to prove Formula (3) for G_4, G_6 and G_8.
- We directly proved Formula (2) for G_5 and G_7, by expressing $\tau \left(z^{\mid Z(G_n) \mid} b^{-1} \right)$ as a linear combination of entries of the matrix A.
The main results

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, \ldots, 8\}$. The BMM symmetrising trace conjecture holds for G_n.

Our C++ program has expressed s_b and t_b as linear combinations of the elements of B_n, for all $b_j \in B_n$ (in the case of G_7, the product of the third generator with any b_j is deduced from the other two). This in fact allows us to express any product of the generators, and thus any element, of $H(G_n)$ as a linear combination of the elements of B_n.

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, \ldots, 8\}$. The set B_n is a basis for $H(G_n)$ as an R_{G_n}-module. In particular, the BMR freeness conjecture holds for G_n.

The main results

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, \ldots, 8\}$. The BMM symmetrising trace conjecture holds for G_n.

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of B_n, for all $b_j \in B_n$.
The main results

Theorem (Boura–Chavli–C.–Karvounis)

Let \(n \in \{4, \ldots, 8\} \). The BMM symmetrising trace conjecture holds for \(G_n \).

Our C++ program has expressed \(sb_j \) and \(tb_j \) as linear combinations of the elements of \(B_n \), for all \(b_j \in B_n \) (in the case of \(G_7 \), the product of the third generator with any \(b_j \) is deduced from the other two).
The main results

Theorem (Boura–Chavli–C.–Karvounis)

Let \(n \in \{4, \ldots , 8\} \). The BMM symmetrising trace conjecture holds for \(G_n \).

Our C++ program has expressed \(sb_j \) and \(tb_j \) as linear combinations of the elements of \(B_n \), for all \(b_j \in B_n \) (in the case of \(G_7 \), the product of the third generator with any \(b_j \) is deduced from the other two). This in fact allows us to express any product of the generators, and thus any element, of \(H(G_n) \) as a linear combination of the elements of \(B_n \).
The main results

Theorem (Boura–Chavli–C.–Karvounis)
Let \(n \in \{4, \ldots, 8\} \). The BMM symmetrising trace conjecture holds for \(G_n \).

Our C++ program has expressed \(sb_j \) and \(tb_j \) as linear combinations of the elements of \(B_n \), for all \(b_j \in B_n \) (in the case of \(G_7 \), the product of the third generator with any \(b_j \) is deduced from the other two). This in fact allows us to express any product of the generators, and thus any element, of \(\mathcal{H}(G_n) \) as a linear combination of the elements of \(B_n \).

Theorem (Boura–Chavli–C.–Karvounis)
Let \(n \in \{4, \ldots, 8\} \). The set \(B_n \) is a basis for \(\mathcal{H}(G_n) \) as an \(R_{G_n} \)-module. In particular, the BMR freeness conjecture holds for \(G_n \).