The symmetrising trace conjecture for Hecke algebras

(joint work with C. Boura, E. Chavli & K. Karvounis)

Maria Chlouveraki

Université de Versailles

Let V be a finite dimensional complex vector space.

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of $\mathrm{GL}(V)$ generated by pseudo-reflections, that is, non-trivial elements that fix a hyperplane pointwise.

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of $\mathrm{GL}(V)$ generated by pseudo-reflections, that is, non-trivial elements that fix a hyperplane pointwise.

Theorem (Shephard-Todd)

Let $W \subset GL(V)$ be an irreducible complex reflection group (i.e., W acts irreducibly on V). Then one of the following assertions is true:

- $W \cong G(de, e, r)$, where G(de, e, r) is the group of all $r \times r$ monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a d-th root of unity.
- $W \cong G_n$ for some $n = 4, \dots, 37$.

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of $\mathrm{GL}(V)$ generated by pseudo-reflections, that is, non-trivial elements that fix a hyperplane pointwise.

Theorem (Shephard-Todd)

Let $W \subset GL(V)$ be an irreducible complex reflection group (i.e., W acts irreducibly on V). Then one of the following assertions is true:

- $W \cong G(de, e, r)$, where G(de, e, r) is the group of all $r \times r$ monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a d-th root of unity.
- $W \cong G_n$ for some n = 4, ..., 37.

We define the rank of W to be the dimension of V.

$$G_4 = \left\langle s, \ t \ \middle| \ sts = tst, \ s^3 = 1, \ t^3 = 1 \right\rangle$$

$$\textit{G}_{4} = \left\langle \textit{s}, \; t \; \mid \; \textit{sts} = \textit{tst}, \; \; \textit{s}^{3} = 1, \; \; \textit{t}^{3} = 1 \right\rangle \hspace{0.5cm} \textit{B(G}_{4}) = \left\langle \textit{s}, \; t \; \mid \; \textit{sts} = \textit{tst} \right\rangle$$

$$G_4=\left\langle s,\,t\mid sts=tst,\;s^3=1,\;t^3=1\right\rangle$$
 $B(G_4)=\left\langle s,\,t\mid sts=tst\right\rangle$ $\mathcal{H}(G_4)=\left\langle s,\,t\mid sts=tst,\;s^3=as^2+bs+c,\;t^3=at^2+bt+c\right\rangle$ over $R_{G_4}=\mathbb{Z}[a,b,c^{\pm 1}].$

$$G_4 = \left\langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \right\rangle \quad B(G_4) = \left\langle s, t \mid sts = tst \right\rangle$$

$$\mathcal{H}(G_4) = \left\langle s, t \mid sts = tst, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \right\rangle$$
 over
$$R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}].$$

$$\textit{G}_{5} = \left\langle \textit{s}, \; \textit{t} \; \middle| \; \textit{stst} = \textit{tsts}, \; \; \textit{s}^{3} = 1, \; \; \textit{t}^{3} = 1 \right\rangle$$

$$G_4 = \left\langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \right\rangle \quad B(G_4) = \left\langle s, t \mid sts = tst \right\rangle$$

$$\mathcal{H}(G_4) = \left\langle s, t \mid sts = tst, \ s^3 = as^2 + bs + c, \ t^3 = at^2 + bt + c \right\rangle$$
 over
$$R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}].$$

over
$$R_{G_4} = \mathbb{Z}[a, b, c^{\perp 1}].$$

$$G_5 = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = 1, \ t^3 = 1 \right\rangle \quad B(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts \right\rangle$$

$$\begin{aligned} &G_4=\left\langle s,\,t \mid sts=tst,\ s^3=1,\ t^3=1\right\rangle \quad B(G_4)=\left\langle s,\,t\mid sts=tst\right\rangle \\ &\mathcal{H}(G_4)=\left\langle s,\,t\mid sts=tst,\ s^3=as^2+bs+c,\ t^3=at^2+bt+c\right\rangle \\ &\text{over } R_{G_4}=\mathbb{Z}[a,b,c^{\pm 1}]. \end{aligned}$$

$$G_5 = \left\langle s, t \mid stst = tsts, \ s^3 = 1, \ t^3 = 1 \right\rangle \quad B(G_5) = \left\langle s, t \mid stst = tsts \right\rangle$$

$$\mathcal{H}(G_5) = \left\langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \right\rangle$$
 over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}].$

Let W be a complex reflection group.

$$\begin{aligned} &G_4=\left\langle s,\,t \;\mid\; sts=tst,\;\; s^3=1,\;\; t^3=1\right\rangle \quad B(G_4)=\left\langle s,\,t\;\;\mid\; sts=tst\right\rangle \\ &\mathcal{H}(G_4)=\left\langle s,\,t\;\;\mid\; sts=tst,\;\; s^3=as^2+bs+c,\;\; t^3=at^2+bt+c\right\rangle \\ &\text{over } R_{G_4}=\mathbb{Z}[a,b,c^{\pm 1}]. \end{aligned}$$

$$G_5 = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = 1, \ t^3 = 1 \right\rangle \quad B(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts \right\rangle$$

$$\mathcal{H}(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \right\rangle$$
 over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}].$

• We have $Z(B(W)) = \langle \zeta_W \rangle$.

Let W be a complex reflection group.

$$G_4=\left\langle s,\,t\mid sts=tst,\;s^3=1,\;t^3=1\right\rangle$$
 $B(G_4)=\left\langle s,\,t\mid sts=tst\right\rangle$ $\mathcal{H}(G_4)=\left\langle s,\,t\mid sts=tst,\;s^3=as^2+bs+c,\;t^3=at^2+bt+c\right\rangle$ over $R_{G_4}=\mathbb{Z}[a,b,c^{\pm 1}].$

$$G_5 = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = 1, \ t^3 = 1 \right\rangle \quad B(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts \right\rangle$$

$$\mathcal{H}(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \right\rangle$$
 over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}].$

• We have $Z(B(W)) = \langle \zeta_W \rangle$. In the examples, $\zeta_{G_4} = ststst$ and $\zeta_{G_5} = stst$.

$$\begin{aligned} &G_4=\left\langle s,\,t\ \middle|\ sts=tst,\ s^3=1,\ t^3=1\right\rangle \quad B(G_4)=\left\langle s,\,t\ \middle|\ sts=tst\right\rangle \\ &\mathcal{H}(G_4)=\left\langle s,\,t\ \middle|\ sts=tst,\ s^3=as^2+bs+c,\ t^3=at^2+bt+c\right\rangle \\ &\text{over }R_{G_4}=\mathbb{Z}[a,b,c^{\pm 1}]. \end{aligned}$$

$$G_5 = \langle s, t \mid stst = tsts, \ s^3 = 1, \ t^3 = 1 \rangle$$
 $B(G_5) = \langle s, t \mid stst = tsts \rangle$ $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \rangle$ over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}].$

- We have $Z(B(W)) = \langle \zeta_W \rangle$. In the examples, $\zeta_{G_4} = ststst$ and $\zeta_{G_5} = stst$.
- We have $B(W) \rightarrow \mathcal{H}(W), \ \zeta_W \mapsto z_W$.

The Broué-Malle-Rouquier freeness conjecture

The Broué-Malle-Rouquier freeness conjecture

Theorem (since October)

The algebra $\mathcal{H}(W)$ is a free R_W -module of rank |W|.

The Broué-Malle-Rouquier freeness conjecture

Theorem (since October)

The algebra $\mathcal{H}(W)$ is a free R_W -module of rank |W|.

It has been proved for :

- the real reflection groups by Bourbaki;
- the complex reflection groups G(de, e, r) by Ariki–Koike, Broué–Malle, Ariki;
- the group G₄ by Broué–Malle, Funar, Marin;
- the group G_{12} by Marin–Pfeiffer;
- the groups G_4, \ldots, G_{16} by Chavli;
- the groups G_{17} , G_{18} , G_{19} by Tsuchioka;
- the groups G_{20} , G_{21} by Marin;
- the groups G_{22}, \ldots, G_{37} by Marin, Marin–Pfeiffer.

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$.

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$.

Conjecture

There exists a linear map $\tau: \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

1 τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$.

Conjecture

There exists a linear map $\tau: \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

- **1** au is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- ② When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$.

Conjecture

There exists a linear map $\tau: \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

- **1** au is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- ② When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$.

Conjecture

There exists a linear map $\tau: \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

- **1** au is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- ② When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.
- $oldsymbol{0}$ au satisfies an extra condition, which makes it unique.

It has been proved for:

- the real reflection groups by Bourbaki;
- the complex reflection groups G(de, e, r) by Bremke–Malle, Malle–Mathas;
- the groups G_4 , G_{12} , G_{22} , G_{24} by Malle-Michel (G_4 also by Marin-Wagner).

We have $|G_4|=24$, $|G_5|=72$, $|G_6|=48$, $|G_7|=144$, $|G_8|=96$.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \dots, 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_i)_{b_i, b_i \in \mathcal{B}_n})$.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \dots, 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W .

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \dots, 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \dots, 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n=4,\ldots,16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, \dots, 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n=4,\ldots,16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify \mathcal{B}_n accordingly.

We have $|G_4|=24$, $|G_5|=72$, $|G_6|=48$, $|G_7|=144$, $|G_8|=96$.

STEP 1: Let $n \in \{4, \dots, 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(\mathcal{G}_n)$ and define a linear map τ on $\mathcal{H}(\mathcal{G}_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for $n=4,\ldots,16$. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify \mathcal{B}_n accordingly.

STEP 3: Check that the extra third condition holds.

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n .

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_i)$ is the coefficient of 1 in this linear combination.

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

- I1. The basis \mathcal{B}_n .
- 12. The braid, positive and inverse Hecke relations (for example, $s^{-1} = c^{-1}s^2 ac^{-1}s bc^{-1}$).
- I3. The "special cases": these are some equalities computed by hand which express a given element of $\mathcal{H}(G_n)$ as a sum of other elements in $\mathcal{H}(G_n)$.

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

- I1. The basis \mathcal{B}_n .
- 12. The braid, positive and inverse Hecke relations (for example, $s^{-1} = c^{-1}s^2 ac^{-1}s bc^{-1}$).
- 13. The "special cases": these are some equalities computed by hand which express a given element of $\mathcal{H}(G_n)$ as a sum of other elements in $\mathcal{H}(G_n)$.

The case of G_{Λ}

$$\text{We have } \mathcal{B}_4 = \left\{ \begin{array}{l} 1, s, s^2, t^2, t, t^2s, ts, t^2s^2, ts^2, st, st^2s, sts, st^2s^2, sts^2, \\ s^2t^2, s^2t, s^2t^2s, s^2ts, s^2t^2s^2, s^2ts^2, ststst, stststs, stststs^2 \end{array} \right\}.$$

Running the C++ program takes about 1 hour on an Intel Core i5 CPU.

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n .

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n .

Set $z := z_{G_n}$.

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n .

Set $z := z_{G_n}$. There exists a set \mathcal{E}_n with $1, s, t \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \mid e \in \mathcal{E}_n, \ k = 0, 1, \dots, |Z(G_n)| - 1 \}.$$

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n .

Set
$$z:=z_{\mathcal{G}_n}$$
. There exists a set \mathcal{E}_n with $1,s,t\in\mathcal{E}_n$ such that
$$\mathcal{B}_n=\{z^ke\,|\,e\in\mathcal{E}_n,\,k=0,1,\ldots,|Z(\mathcal{G}_n)|-1\}.$$

We have
$$\mathcal{E}_n \leftrightarrow G_n/Z(G_n) \cong \left\{ \begin{array}{ll} \mathfrak{A}_4 & \text{for } n=5,6,7; \\ \mathfrak{S}_4 & \text{for } n=8. \end{array} \right.$$

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n .

Set $z:=z_{\mathcal{G}_n}.$ There exists a set \mathcal{E}_n with $1,s,t\in\mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \, | \, e \in \mathcal{E}_n, \; k = 0, 1, \dots, |Z(G_n)| - 1 \}.$$

We have
$$\mathcal{E}_n \leftrightarrow G_n/Z(G_n) \cong \left\{ \begin{array}{ll} \mathfrak{A}_4 & \text{for } n=5,6,7; \\ \mathfrak{S}_4 & \text{for } n=8. \end{array} \right.$$

The curious case of G_7

3 elements have to be replaced!

Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n .

Set $z:=z_{G_n}$. There exists a set \mathcal{E}_n with $1,s,t\in\mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \mid e \in \mathcal{E}_n, \ k = 0, 1, \dots, |Z(G_n)| - 1 \}.$$

We have
$$\mathcal{E}_n \leftrightarrow G_n/Z(G_n) \cong \left\{ egin{array}{ll} \mathfrak{A}_4 & \text{for } n=5,6,7; \\ \mathfrak{S}_4 & \text{for } n=8. \end{array} \right.$$

The curious case of G_7

3 elements have to be replaced!

The inputs of the SAGE algorithm are the coefficients of the following elements when written as linear combinations of the elements of \mathcal{B}_n :

- I1. sb_i for all $b_i \in \mathcal{B}_n$.
- 12. tb_j for all $b_j \in \mathcal{B}_n$.
- 13. $z^{|Z(G_n)|} = z \cdot z^{|Z(G_n)|-1}$.

$$\bullet \ \mathcal{H}(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \right\rangle.$$

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$.
- $\bullet \ \mathcal{E}_5 = \left\{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\right\}$

- $\bullet \ \mathcal{H}(\textit{G}_{5}) = \left\langle \textit{s}, \ t \ \middle| \ \textit{stst} = \textit{tsts}, \ \textit{s}^{3} = \textit{as}^{2} + \textit{bs} + \textit{c}, \ \textit{t}^{3} = \textit{dt}^{2} + \textit{et} + \textit{f} \right\rangle.$
- $\bullet \ \mathcal{E}_5 = \left\{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\right\} = \{b_1, b_2 \dots, b_{12}\}.$

- $\bullet \ \mathcal{H}(\textit{G}_{5}) = \left\langle \textit{s}, \; t \; \middle| \; \textit{stst} = \textit{tsts}, \; \; \textit{s}^{3} = \textit{as}^{2} + \textit{bs} + \textit{c}, \; \; t^{3} = \textit{dt}^{2} + \textit{et} + \textit{f} \right\rangle.$
- $\bullet \ \mathcal{E}_5 = \left\{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\right\} = \{b_1, b_2 \dots, b_{12}\}.$
- z = stst.

- $\bullet \ \mathcal{H}(\textit{G}_{5}) = \left\langle \textit{s}, \; t \; \middle| \; \textit{stst} = \textit{tsts}, \; \; \textit{s}^{3} = \textit{as}^{2} + \textit{bs} + \textit{c}, \; \; t^{3} = \textit{dt}^{2} + \textit{et} + \textit{f} \right\rangle.$
- $\bullet \ \mathcal{E}_5 = \left\{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\right\} = \{b_1, b_2 \dots, b_{12}\}.$
- z = stst.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

- $\bullet \ \mathcal{H}(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \right\rangle.$
- $\bullet \ \mathcal{E}_5 = \left\{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\right\} = \{b_1, b_2 \dots, b_{12}\}.$
- z = stst.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$.

- $\bullet \ \mathcal{H}(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \right\rangle.$
- $\bullet \ \mathcal{E}_5 = \left\{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\right\} = \{b_1, b_2 \dots, b_{12}\}.$
- z = stst.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$. We observe that we have:

- $\bullet \ \mathcal{H}(G_5) = \left\langle s, \ t \ \middle| \ stst = tsts, \ s^3 = as^2 + bs + c, \ t^3 = dt^2 + et + f \right\rangle.$
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$
- z = stst.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$. We observe that we have:

$$\begin{array}{lll} b_{12k+2} &= b_{12k+1} \cdot s, & b_{12k+8} &= b_{12k+6} \cdot t, \\ b_{12k+3} &= b_{12k+2} \cdot s, & b_{12k+9} &= b_{12k+7} \cdot t, \\ b_{12k+4} &= b_{12k+1} \cdot t, & b_{12k+10} &= f^{-1} \big(b_{12k+5} - db_{12k+4} - eb_{12k+1} \big) \cdot s, \\ b_{12k+5} &= b_{12k+4} \cdot t, & b_{12k+11} &= b_{12k+10} \cdot t, \\ b_{12k+6} &= b_{12k+2} \cdot t, & b_{12k+12} &= b_{12k+11} \cdot t. \\ b_{12k+7} &= b_{12k+3} \cdot t \end{array}$$

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a,b,c^{\pm 1},d,e,f^{\pm 1}]$.

Let $j \in \{1,\ldots,72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a,b,c^{\pm 1},d,e,f^{\pm 1}]$.

Let
$$sb_j=\sum_l \lambda_{j,l}^s b_l$$
, $tb_j=\sum_l \lambda_{j,l}^t b_l$ and $z^6=\sum_l \mu_l b_l$.

Let $j \in \{1,\ldots,72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a,b,c^{\pm 1},d,e,f^{\pm 1}]$.

Let $sb_j = \sum_l \lambda_{j,l}^s b_l$, $tb_j = \sum_l \lambda_{j,l}^t b_l$ and $z^6 = \sum_l \mu_l b_l$.

Examples

$$\bullet \ \tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{l} \lambda_{j,l}^t \tau(b_{12k+1}b_l).$$

Let $j \in \{1,\ldots,72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a,b,c^{\pm 1},d,e,f^{\pm 1}]$.

Let $sb_j=\sum_l \lambda_{j,l}^s b_l$, $tb_j=\sum_l \lambda_{j,l}^t b_l$ and $z^6=\sum_l \mu_l b_l$.

Examples

- $\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{l} \lambda_{j,l}^t \tau(b_{12k+1}b_l).$
- $\tau(b_{12k+10}b_j) = f^{-1} \sum_{l} \lambda_{l,l}^s (\tau(b_{12k+5}b_l) d\tau(b_{12k+4}b_l) e\tau(b_{12k+1}b_l)).$

Let $j \in \{1,\ldots,72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a,b,c^{\pm 1},d,e,f^{\pm 1}]$.

Let $sb_j=\sum_l \lambda_{j,l}^s b_l$, $tb_j=\sum_l \lambda_{j,l}^t b_l$ and $z^6=\sum_l \mu_l b_l$.

Examples

- $\bullet \ \tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{l} \lambda_{j,l}^t \tau(b_{12k+1}b_l).$
- $\tau(b_{12k+10}b_j) = f^{-1} \sum_{l} \lambda_{j,l}^s (\tau(b_{12k+5}b_l) d\tau(b_{12k+4}b_l) e\tau(b_{12k+1}b_l)).$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

Let $j \in \{1,\ldots,72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a,b,c^{\pm 1},d,e,f^{\pm 1}]$.

Let $sb_j=\sum_l \lambda_{j,l}^s b_l$, $tb_j=\sum_l \lambda_{j,l}^t b_l$ and $z^6=\sum_l \mu_l b_l$.

Examples

- $\bullet \ \tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{l} \lambda_{j,l}^t \tau(b_{12k+1}b_l).$
- $\tau(b_{12k+10}b_j) = f^{-1} \sum_{l} \lambda_{l,l}^s (\tau(b_{12k+5}b_l) d\tau(b_{12k+4}b_l) e\tau(b_{12k+1}b_l)).$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

• If $1\leqslant j\leqslant 12(6-k)$, then we have $b_{12k+1}b_j\in\mathcal{B}_5$, whence $au(b_{12k+1}b_j)=0$.

Let $j \in \{1,\ldots,72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a,b,c^{\pm 1},d,e,f^{\pm 1}]$.

Let $sb_j = \sum_l \lambda_{j,l}^s b_l$, $tb_j = \sum_l \lambda_{j,l}^t b_l$ and $z^6 = \sum_l \mu_l b_l$.

Examples

- $\bullet \ \tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{l} \lambda_{j,l}^t \tau(b_{12k+1}b_l).$
- $\tau(b_{12k+10}b_j) = f^{-1} \sum_{l} \lambda_{j,l}^s (\tau(b_{12k+5}b_l) d\tau(b_{12k+4}b_l) e\tau(b_{12k+1}b_l)).$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leqslant j \leqslant 12(6-k)$, then we have $b_{12k+1}b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1}b_j) = 0$.
- If $12(6-k) < j \leqslant 72$, then $b_{12k+1}b_j = z^kb_j = z^{k-6}b_jz^6 = b_{12k+j-72} \cdot z^6$.

Let $j \in \{1,\ldots,72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a,b,c^{\pm 1},d,e,f^{\pm 1}]$.

Let $sb_j = \sum_l \lambda_{j,l}^s b_l$, $tb_j = \sum_l \lambda_{j,l}^t b_l$ and $z^6 = \sum_l \mu_l b_l$.

Examples

- $\bullet \ \tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_{l} \lambda_{j,l}^t \tau(b_{12k+1}b_l).$
- $\tau(b_{12k+10}b_j) = f^{-1} \sum_{l} \lambda_{j,l}^s (\tau(b_{12k+5}b_l) d\tau(b_{12k+4}b_l) e\tau(b_{12k+1}b_l)).$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leqslant j \leqslant 12(6-k)$, then we have $b_{12k+1}b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1}b_j) = 0$.
- If $12(6-k) < j \le 72$, then $b_{12k+1}b_j = z^kb_j = z^{k-6}b_jz^6 = b_{12k+j-72} \cdot z^6$. We get

$$\tau(b_{12k+1}b_j) = \tau(b_{12k+j-72} \cdot z^6) = \sum_{l} \mu_l \tau(b_{12k+j-72} b_l).$$

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple.

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in Irr(K\mathcal{H}(W))} \frac{1}{\mathsf{s}_{\chi}} \chi \tag{1}$$

where $s_{\chi} \in K$ denotes the Schur element of KH(W) associated with χ .

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in Irr(K\mathcal{H}(W))} \frac{1}{\mathsf{s}_{\chi}} \chi \tag{1}$$

where $s_{\chi} \in K$ denotes the Schur element of KH(W) associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in Irr(K\mathcal{H}(W))} \frac{1}{\mathsf{s}_{\chi}} \chi \tag{1}$$

where $s_{\chi} \in K$ denotes the Schur element of KH(W) associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in Irr(K\mathcal{H}(W))} \frac{1}{\mathsf{s}_{\chi}} \chi \tag{1}$$

where $s_{\chi} \in K$ denotes the Schur element of KH(W) associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\widetilde{\tau} = \tau$ by showing that $\widetilde{\tau}(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$.

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \operatorname{Irr}(K\mathcal{H}(W))} \frac{1}{\mathsf{s}_{\chi}} \chi \tag{1}$$

where $s_{\chi} \in K$ denotes the Schur element of $K\mathcal{H}(W)$ associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\widetilde{\tau} = \tau$ by showing that $\widetilde{\tau}(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$.

STEP 3: Calculate the entries of A using $\tilde{\tau}$. We already know that A is symmetric, so we only need to calculate the entries in and above the diagonal.

Let W be a complex reflection group. Under the BMR freeness conjecture, Malle has shown that there exists a field K over which $\mathcal{H}(W)$ is split semisimple. Then

$$\tau = \sum_{\chi \in \operatorname{Irr}(K\mathcal{H}(W))} \frac{1}{\mathsf{s}_{\chi}} \chi \tag{1}$$

where $s_{\chi} \in K$ denotes the Schur element of KH(W) associated with χ .

Schur elements have been completely determined by Malle for all non-real exceptional complex reflection groups.

STEP 1: Define $\tilde{\tau}$ as the RHS of (1).

STEP 2: Establish that $\widetilde{\tau} = \tau$ by showing that $\widetilde{\tau}(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$.

STEP 3: Calculate the entries of A using $\tilde{\tau}$. We already know that A is symmetric, so we only need to calculate the entries in and above the diagonal.

Our program worked for G_4 and G_6 . It produced A for G_8 , but could not calculate $\det(A)$. It could not even establish STEP 2 for G_5 and G_7 .

Malle and Michel have shown that, since

① each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w \mid w \in G_n \}$),

Malle and Michel have shown that, since

- **①** each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w \mid w \in G_n \}$),
- $2 \tau(b) = \delta_{1b} \text{ for all } b \in \mathcal{B}_{\textit{n}} \text{, and }$

Malle and Michel have shown that, since

- **①** each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w \mid w \in G_n \}$),
- ② $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
- **3** \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

Malle and Michel have shown that, since

- **1** each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w \mid w \in G_n \}$),
- ② $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
- 3 \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z^{|Z(G_n)|}b^{-1}\right) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \tag{2}$$

Malle and Michel have shown that, since

- **①** each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w \mid w \in G_n \}$),
- ② $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
- **3** \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z^{|Z(G_n)|}b^{-1}\right) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
 (2)

This is equivalent to

$$\sum_{\chi \in \operatorname{Irr}(K\mathcal{H}(G_n))} \frac{\omega_{\chi}(z^{|Z(G_n)|})}{s_{\chi}} \chi(b^{-1}) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
 (3)

Malle and Michel have shown that, since

- **①** each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w \mid w \in G_n \}$),
- ② $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
- **3** \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z^{|Z(G_n)|}b^{-1}\right) = 0 \quad \text{for all } b \in \mathcal{B}_n \setminus \{1\}. \tag{2}$$

This is equivalent to

$$\sum_{\chi \in \operatorname{Irr}(K\mathcal{H}(\mathcal{G}_n))} \frac{\omega_{\chi}(\mathbf{z}^{|\mathcal{Z}(\mathcal{G}_n)|})}{s_{\chi}} \; \chi(b^{-1}) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}. \tag{3}$$

• We used GAP to prove Formula (3) for G_4 , G_6 and G_8 .

Malle and Michel have shown that, since

- **1** each element of \mathcal{B}_n corresponds to a distinct element of G_n (that is, $\mathcal{B}_n = \{ T_w \mid w \in G_n \}$),
- ② $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
- $lacksquare{3} \mathcal{B}_n$ is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$\tau\left(z^{|Z(G_n)|}b^{-1}\right) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
 (2)

This is equivalent to

$$\sum_{\chi \in \operatorname{Irr}(K\mathcal{H}(G_n))} \frac{\omega_{\chi}(z^{|Z(G_n)|})}{s_{\chi}} \chi(b^{-1}) = 0 \quad \text{ for all } b \in \mathcal{B}_n \setminus \{1\}.$$
 (3)

- We used GAP to prove Formula (3) for G_4 , G_6 and G_8 .
- We directly proved Formula (2) for G_5 and G_7 , by expressing $\tau\left(z^{|Z(G_n)|}b^{-1}\right)$ as a linear combination of entries of the matrix A.

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, \dots, 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, \dots, 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of \mathcal{B}_n , for all $b_j \in \mathcal{B}_n$

Theorem (Boura-Chavli-C.-Karvounis)

Let $n \in \{4, ..., 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of \mathcal{B}_n , for all $b_j \in \mathcal{B}_n$ (in the case of G_7 , the product of the third generator with any b_j is deduced from the other two).

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, ..., 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of \mathcal{B}_n , for all $b_j \in \mathcal{B}_n$ (in the case of G_7 , the product of the third generator with any b_j is deduced from the other two). This in fact allows us to express any product of the generators, and thus any element, of $\mathcal{H}(G_n)$ as a linear combination of the elements of \mathcal{B}_n .

Theorem (Boura-Chavli-C.-Karvounis)

Let $n \in \{4, ..., 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of \mathcal{B}_n , for all $b_j \in \mathcal{B}_n$ (in the case of G_7 , the product of the third generator with any b_j is deduced from the other two). This in fact allows us to express any product of the generators, and thus any element, of $\mathcal{H}(G_n)$ as a linear combination of the elements of \mathcal{B}_n .

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, ..., 8\}$. The set \mathcal{B}_n is a basis for $\mathcal{H}(G_n)$ as an R_{G_n} -module. In particular, the BMR freeness conjecture holds for G_n .