Rouquier blocks of the cyclotomic Hecke algebras of complex reflection groups

Maria Chlouveraki

MSRI

February 22, 2008

ullet $\mathcal O$ is a Noetherian and integrally closed domain with field of fractions $\mathcal F$.

- $m{\circ}$ \mathcal{O} is a Noetherian and integrally closed domain with field of fractions F.
- ullet A is an \mathcal{O} -algebra, free and finitely generated as an \mathcal{O} -module.

- $m{O}$ is a Noetherian and integrally closed domain with field of fractions F.
- ullet A is an \mathcal{O} -algebra, free and finitely generated as an \mathcal{O} -module.
- K is a finite Galois extension of F such that the algebra $KA := K \otimes_{\mathcal{O}} A$ is split semisimple.

- $m{O}$ is a Noetherian and integrally closed domain with field of fractions F.
- ullet A is an \mathcal{O} -algebra, free and finitely generated as an \mathcal{O} -module.
- K is a finite Galois extension of F such that the algebra $KA := K \otimes_{\mathcal{O}} A$ is split semisimple.

Definition

The blocks of A are the primitive idempotents of ZA.

- $m{O}$ is a Noetherian and integrally closed domain with field of fractions F.
- A is an \mathcal{O} -algebra, free and finitely generated as an \mathcal{O} -module.
- K is a finite Galois extension of F such that the algebra $KA := K \otimes_{\mathcal{O}} A$ is split semisimple.

Definition

The blocks of A are the primitive idempotents of ZA.

Since KA is semisimple, we have a bijection

$$\begin{array}{ccc}
\operatorname{Irr}(\mathsf{K}\mathsf{A}) & \leftrightarrow & \operatorname{Bl}(\mathsf{K}\mathsf{A}) \\
\chi & \leftrightarrow & e_{\chi}
\end{array}$$

There exists a unique partition $\mathrm{Bl}(A)$ of $\mathrm{Irr}(\mathcal{K}A)$ minimal for the property :

There exists a unique partition $\mathrm{Bl}(A)$ of $\mathrm{Irr}(\mathcal{K}A)$ minimal for the property :

For all
$$B \in \mathrm{Bl}(A)$$
, $e_B := \sum_{\chi \in B} e_\chi \in A$.

There exists a unique partition $\mathrm{Bl}(A)$ of $\mathrm{Irr}(\mathcal{K}A)$ minimal for the property :

For all
$$B \in \mathrm{Bl}(A)$$
, $e_B := \sum_{\chi \in B} e_\chi \in A$.

In particular, the set $\{e_B\}_{B\in Bl(A)}$ is the set of all the blocks of A.

There exists a unique partition $\mathrm{Bl}(A)$ of $\mathrm{Irr}(\mathcal{K}A)$ minimal for the property :

For all
$$B \in \mathrm{Bl}(A)$$
, $e_B := \sum_{\chi \in B} e_\chi \in A$.

In particular, the set $\{e_B\}_{B\in\mathrm{Bl}(A)}$ is the set of all the blocks of A.

If $\chi \in B$ for $B \in Bl(A)$, we say that " χ belongs to the block e_B ".

Symmetric algebras

Definition

We say that a linear map $t: A \to \mathcal{O}$ is a symmetrizing form on A or that A is a symmetric algebra if

- t is a trace function, i.e., t(ab) = t(ba) for all $a, b \in A$.
- The morphism

$$\hat{t}: A \to \operatorname{Hom}_{\mathcal{O}}(A, \mathcal{O}), \ a \mapsto (x \mapsto \hat{t}(a)(x) := t(ax))$$

is an isomorphism of A-modules-A.

Symmetric algebras

Definition

We say that a linear map $t: A \to \mathcal{O}$ is a symmetrizing form on A or that A is a symmetric algebra if

- t is a trace function, i.e., t(ab) = t(ba) for all $a, b \in A$.
- The morphism

$$\hat{t}: A \to \operatorname{Hom}_{\mathcal{O}}(A, \mathcal{O}), \ a \mapsto (x \mapsto \hat{t}(a)(x) := t(ax))$$

is an isomorphism of A-modules-A.

Example:

If $\mathcal{O}=\mathbb{Z}$ and $A=\mathbb{Z}[G]$ (G a finite group), we can define the following symmetrizing form ("canonical") on A

$$t: \mathbb{Z}[G] \to \mathbb{Z}, \ \sum_{g \in G} a_g g \mapsto a_1.$$

We have

$$t = \sum_{\chi \in Irr(KA)} \quad \chi,$$

We have

$$t = \sum_{\chi \in \operatorname{Irr}(\mathit{KA})} rac{1}{\mathit{s}_{\chi}} \chi,$$

where s_{χ} is the Schur element of χ with respect to t. We have $s_{\chi} \in \mathcal{O}_{K}$.

We have

$$t = \sum_{\chi \in \operatorname{Irr}(\mathit{KA})} rac{1}{\mathit{s}_{\chi}} \chi,$$

where s_{χ} is the Schur element of χ with respect to t. We have $s_{\chi} \in \mathcal{O}_{K}$.

② For all $\chi \in \operatorname{Irr}(\mathit{KA})$, the primitive idempotent of ZKA associated to χ is

$$e_\chi = rac{\hat{t}^{-1}(\chi)}{s_\chi}.$$

We have

$$t = \sum_{\chi \in \operatorname{Irr}(\mathit{KA})} rac{1}{\mathit{s}_{\chi}} \chi,$$

where s_{χ} is the Schur element of χ with respect to t. We have $s_{\chi} \in \mathcal{O}_{K}$.

② For all $\chi \in \mathrm{Irr}(\mathit{KA})$, the primitive idempotent of ZKA associated to χ is

$$e_{\chi}=rac{\hat{t}^{-1}(\chi)}{\mathsf{s}_{\chi}}.$$

Example:

If $\mathcal{O}=\mathbb{Z}$, $A=\mathbb{Z}[G]$ (G a finite group) and t is the canonical form on A, we have

$$s_{\chi} = \frac{|G|}{\chi(1)}.$$

 Every complex reflection group W has a nice "presentation a la Coxeter":

 Every complex reflection group W has a nice "presentation a la Coxeter":

•
$$G_2 = \langle s, t | ststst = tststs, s^2 = t^2 = 1 \rangle$$

 Every complex reflection group W has a nice "presentation a la Coxeter":

•
$$G_2 = \langle s, t | ststst = tststs, s^2 = t^2 = 1 \rangle$$

•
$$G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$$

- Every complex reflection group W has a nice "presentation a la Coxeter":
 - $G_2 = \langle s, t | ststst = tststs, s^2 = t^2 = 1 \rangle$
 - $G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$

and a field of realization K (with ring of integers \mathbb{Z}_K) :

- Every complex reflection group W has a nice "presentation a la Coxeter":
 - $G_2 = \langle s, t | ststst = tststs, s^2 = t^2 = 1 \rangle$
 - $G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$

and a field of realization K (with ring of integers \mathbb{Z}_K):

$$K_{G_2} = \mathbb{Q}$$
 et $K_{G_4} = \mathbb{Q}(\zeta_3)$.

- Every complex reflection group W has a nice "presentation a la Coxeter":
 - $G_2 = \langle s, t | ststst = tststs, s^2 = t^2 = 1 \rangle$
 - $G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$

and a field of realization K (with ring of integers \mathbb{Z}_K):

$$K_{G_2} = \mathbb{Q} \text{ et } K_{G_4} = \mathbb{Q}(\zeta_3).$$

We choose a set of indeterminates

$$\mathbf{u}=(u_{s,j})_{s,\,0\leq j\leq\mathbf{o}(s)-1}$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s,j} = u_{t,j}$ for all j).

• The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ and has a presentation of the form:

7 / 21

• The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ and has a presentation of the form:

$$\mathcal{H}(G_2) = < S, T \mid STSTST = TSTSTS, (S - u_0)(S - u_1) = 0, (T - w_0)(T - w_1) = 0 > .$$

$$\mathcal{H}(G_4) = \langle S, T \mid STS = TST, (S - u_0)(S - u_1)(S - u_2) = 0, \ (T - u_0)(T - u_1)(T - u_2) = 0 \rangle.$$

• The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ and has a presentation of the form:

$$\mathcal{H}(G_2) = < S, T \mid STSTST = TSTSTS, (S - u_0)(S - u_1) = 0, (T - w_0)(T - w_1) = 0 > .$$

• $u_j \mapsto (-1)^j \ (j=0,1), \ \mathcal{H}(G_2) \mapsto \mathbb{Z}[G_2].$

$$\mathcal{H}(G_4) = \langle S, T \mid STS = TST, (S - u_0)(S - u_1)(S - u_2) = 0, \ (T - u_0)(T - u_1)(T - u_2) = 0 \rangle.$$

• $u_j \mapsto \zeta_3^j$ $(j = 0, 1, 2), \mathcal{H}(G_4) \mapsto \mathbb{Z}_K[G_4].$

• The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.
- There exists a unique linear form $t: \mathcal{H}(W) \to \mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ such that:

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.
- There exists a unique linear form $t: \mathcal{H}(W) \to \mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ such that:
 - ▶ t is a symmetrizing form on $\mathcal{H}(W)$.

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.
- There exists a unique linear form $t: \mathcal{H}(W) \to \mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ such that:
 - t is a symmetrizing form on $\mathcal{H}(W)$.
 - ▶ Via the specialization $u_{s,j} \mapsto \zeta_{\mathbf{o}(s)}^{j}$, the form t becomes the canonical form on the group algebra $\mathbb{Z}_{K}[W]$.

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.
- There exists a unique linear form $t: \mathcal{H}(W) \to \mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ such that:
 - t is a symmetrizing form on $\mathcal{H}(W)$.
 - ▶ Via the specialization $u_{s,j} \mapsto \zeta_{\mathbf{o}(s)}^{j}$, the form t becomes the canonical form on the group algebra $\mathbb{Z}_{K}[W]$.
 - t satisfies some other condition.

Theorem (Malle)

Let $\mathbf{v} = (v_{s,j})_{s,j}$ be a set of indeterminates such that, for all s,j, we have

$$v_{s,j}^{|\mu(K)|} := \zeta_{\mathbf{o}(s)}^{-j} u_{s,j}.$$

Then the $K(\mathbf{v})$ -algebra $K(\mathbf{v})\mathcal{H}$ is split semisimple

Theorem (Malle)

Let $\mathbf{v} = (v_{s,j})_{s,j}$ be a set of indeterminates such that, for all s,j, we have

$$v_{s,j}^{|\mu(K)|} := \zeta_{\mathbf{o}(s)}^{-j} u_{s,j}.$$

Then the $K(\mathbf{v})$ -algebra $K(\mathbf{v})\mathcal{H}$ is split semisimple

By "Tits' deformation theorem", we know that the specialization $v_{s,j}\mapsto 1$ induces a bijection

$$\operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}) \leftrightarrow \operatorname{Irr}(W)$$
 $\chi_{\mathbf{v}} \mapsto \chi$

Theorem (Malle)

Let $\mathbf{v} = (v_{s,j})_{s,j}$ be a set of indeterminates such that, for all s,j, we have

$$v_{s,j}^{|\mu(K)|} := \zeta_{\mathbf{o}(s)}^{-j} u_{s,j}.$$

Then the $K(\mathbf{v})$ -algebra $K(\mathbf{v})\mathcal{H}$ is split semisimple

By "Tits' deformation theorem", we know that the specialization $v_{s,j}\mapsto 1$ induces a bijection

$$\operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}) \leftrightarrow \operatorname{Irr}(W)$$

$$\chi_{\mathbf{v}} \mapsto \chi$$

$$s_{\chi}(\mathbf{v}) \mapsto |W|/\chi(1)$$

Generic Schur elements

Theorem (C.)

The Schur element $s_{\chi}(\mathbf{v})$ associated with the irreducible character $\chi_{\mathbf{v}}$ of $K(\mathbf{v})\mathcal{H}$ is an element of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]$ whose irreducible factors (in $K[\mathbf{v},\mathbf{v}^{-1}]$) are of the form

$$\Psi(M)$$

where

- Ψ is a K-cyclotomic polynomial in one variable,
- M is a primitive monomial of degree 0, *i.e.*, if $M = \prod_{s,j} v_{s,j}^{a_{s,j}}$, then $\gcd(a_{s,j}) = 1$ and $\sum_{s,j} a_{s,j} = 0$.

Generic Schur elements

Theorem (C.)

The Schur element $s_{\chi}(\mathbf{v})$ associated with the irreducible character $\chi_{\mathbf{v}}$ of $K(\mathbf{v})\mathcal{H}$ is an element of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]$ whose irreducible factors (in $K[\mathbf{v},\mathbf{v}^{-1}]$) are of the form

$$\Psi(M)$$

where

- Ψ is a K-cyclotomic polynomial in one variable,
- M is a primitive monomial of degree 0, i.e., if $M = \prod_{s,j} v_{s,j}^{a_{s,j}}$, then $\gcd(a_{s,j}) = 1$ and $\sum_{s,j} a_{s,j} = 0$.

The primitive monomials appearing in the factorization of $s_{\chi}(\mathbf{v})$ are unique up to inversion.

Schur elements of G_2 :

$$X_0^2 := u_0, X_1^2 := -u_1, Y_0^2 := w_0, Y_1^2 := -w_1.$$

$$s_1 = \begin{array}{c} \Phi_4(X_0X_1^{-1}) \cdot \Phi_4(Y_0Y_1^{-1}) \cdot \Phi_3(X_0Y_0X_1^{-1}Y_1^{-1}) \cdot \\ \Phi_6(X_0Y_0X_1^{-1}Y_1^{-1}) \end{array}$$

$$s_2 = 2 \cdot X_1^2 X_0^{-2} \cdot \Phi_3(X_0 Y_0 X_1^{-1} Y_1^{-1}) \cdot \Phi_6(X_0 Y_1 X_1^{-1} Y_0^{-1})$$

$$\Phi_4(x) = x^2 + 1$$
, $\Phi_3(x) = x^2 + x + 1$, $\Phi_6(x) = x^2 - x + 1$.

Schur elements of $G_4: X_i^6:=\zeta_3^{-i}u_i$.

$$\begin{split} s_1 &= \ \Phi_9''(X_0X_1^{-1}) \cdot \Phi_{18}'(X_0X_1^{-1}) \cdot \Phi_4(X_0X_1^{-1}) \cdot \Phi_{12}'(X_0X_1^{-1}) \cdot \\ & \ \Phi_{12}''(X_0X_1^{-1}) \cdot \Phi_{36}'(X_0X_1^{-1}) \cdot \Phi_9'(X_0X_2^{-1}) \cdot \Phi_{18}'(X_0X_2^{-1}) \cdot \\ & \ \Phi_4(X_0X_2^{-1}) \cdot \Phi_{12}'(X_0X_2^{-1}) \cdot \Phi_{12}'(X_0X_2^{-1}) \cdot \Phi_{36}''(X_0X_2^{-1}) \cdot \\ & \ \Phi_4(X_0^2X_1^{-1}X_2^{-1}) \cdot \Phi_{12}'(X_0^2X_1^{-1}X_2^{-1}) \cdot \Phi_{12}''(X_0^2X_1^{-1}X_2^{-1}) \\ s_2 &= \ -\zeta_3^2X_2^6X_1^{-6}\Phi_9'(X_1X_0^{-1}) \cdot \Phi_{18}'(X_1X_0^{-1}) \cdot \Phi_{12}'(X_0^2X_1^{-1}X_2^{-1}) \\ & \ \Phi_{18}'(X_2X_0^{-1}) \cdot \Phi_4(X_1X_2^{-1}) \cdot \Phi_{12}'(X_1X_2^{-1}) \cdot \Phi_{12}''(X_1X_2^{-1}) \cdot \\ & \ \Phi_{36}'(X_1X_2^{-1}) \cdot \Phi_4(X_0^{-2}X_1X_2) \cdot \Phi_{12}'(X_0^{-2}X_1X_2) \cdot \Phi_{12}''(X_0^{-2}X_1X_2) \\ s_3 &= \ \Phi_4(X_0^2X_1^{-1}X_2^{-1}) \cdot \Phi_{12}'(X_0^2X_1^{-1}X_2^{-1}) \cdot \Phi_{12}''(X_0^2X_1^{-1}X_2^{-1}) \cdot \\ & \ \Phi_4(X_1^2X_2^{-1}X_0^{-1}) \cdot \Phi_{12}'(X_1^2X_2^{-1}X_0^{-1}) \cdot \Phi_{12}''(X_1^2X_2^{-1}X_0^{-1}) \cdot \\ & \ \Phi_4(X_2^2X_0^{-1}X_1^{-1}) \cdot \Phi_{12}'(X_2^2X_0^{-1}X_1^{-1}) \cdot \Phi_{12}''(X_2^2X_0^{-1}X_1^{-1}) \end{split}$$

$$\begin{aligned} & \Phi_4(x) = x^2 + 1, \ \Phi_9'(x) = x^3 - \zeta_3, \ \Phi_9''(x) = x^3 - \zeta_3^2, \ \Phi_{12}''(x) = x^2 + \zeta_3, \\ & \Phi_{12}'(x) = x^2 + \zeta_3^2, \ \Phi_{18}''(x) = x^3 + \zeta_3, \ \Phi_{18}'(x) = x^3 + \zeta_3^2, \ \Phi_{36}''(x) = x^6 + \zeta_3, \\ & \Phi_{36}'(x) = x^6 + \zeta_3^2. \end{aligned}$$

Definition

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_K -algebra morphism $\phi: \mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}] \to \mathbb{Z}_K[y,y^{-1}]$ such that

$$\phi: v_{s,j} \mapsto y^{n_{s,j}}$$
, with $n_{s,j} \in \mathbb{Z}$ for all s and j .

Definition

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_K -algebra morphism $\phi: \mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}] \to \mathbb{Z}_K[y, y^{-1}]$ such that

$$\phi: v_{s,j} \mapsto y^{n_{s,j}}$$
, with $n_{s,j} \in \mathbb{Z}$ for all s and j .

The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}[y,y^{-1}]$ -algebra obtained via the specialization of \mathcal{H} via the morphism ϕ . It also has a symmetrizing form t_{ϕ} defined as the specialization of the form t.

Definition

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_K -algebra morphism $\phi: \mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}] \to \mathbb{Z}_K[y, y^{-1}]$ such that

$$\phi: v_{s,j} \mapsto y^{n_{s,j}}$$
, with $n_{s,j} \in \mathbb{Z}$ for all s and j .

The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}[y,y^{-1}]$ -algebra obtained via the specialization of \mathcal{H} via the morphism ϕ . It also has a symmetrizing form t_{ϕ} defined as the specialization of the form t.

Examples:

ullet The group algebra $\mathbb{Z}_{\mathsf{K}}[W]$ is the cyclotomic Hecke algebra obtained via

$$v_{s,j} \mapsto 1$$
 for all s,j .

Definition

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_K -algebra morphism $\phi: \mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}] \to \mathbb{Z}_K[y,y^{-1}]$ such that

$$\phi: v_{s,j} \mapsto y^{n_{s,j}}$$
, with $n_{s,j} \in \mathbb{Z}$ for all s and j .

The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}[y,y^{-1}]$ -algebra obtained via the specialization of \mathcal{H} via the morphism ϕ . It also has a symmetrizing form t_{ϕ} defined as the specialization of the form t.

Examples:

ullet The group algebra $\mathbb{Z}_K[W]$ is the cyclotomic Hecke algebra obtained via

$$v_{s,j} \mapsto 1$$
 for all s, j .

ullet The spetsial algebra $\mathcal{H}^s(W)$ is the cyclotomic Hecke algebra obtained via

$$v_{s,0}\mapsto y,\ v_{s,j}\mapsto 1\ \text{for}\ 1\leq j\leq \mathbf{o}(s)-1,\ \text{for all}\ s.$$

The algebra $K(y)\mathcal{H}_{\phi}$ is split semisimple.

The algebra $K(y)\mathcal{H}_{\phi}$ is split semisimple.

By "Tits' deformation theorem", we obtain

$$\operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}) \quad \leftrightarrow \quad \operatorname{Irr}(\mathcal{K}(y)\mathcal{H}_{\phi}) \quad \leftrightarrow \quad \operatorname{Irr}(W) \\
\chi_{\mathbf{v}} \quad \mapsto \quad \chi_{\phi} \quad \mapsto \quad \chi$$

The algebra $K(y)\mathcal{H}_{\phi}$ is split semisimple.

By "Tits' deformation theorem", we obtain

$$\begin{array}{ccccc} \operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}) & \leftrightarrow & \operatorname{Irr}(\mathcal{K}(y)\mathcal{H}_{\phi}) & \leftrightarrow & \operatorname{Irr}(W) \\ \chi_{\mathbf{v}} & \mapsto & \chi_{\phi} & \mapsto & \chi \\ s_{\chi}(\mathbf{v}) & \mapsto & s_{\chi_{\phi}}(y) & \mapsto & |W|/\chi(1) \end{array}$$

The algebra $K(y)\mathcal{H}_{\phi}$ is split semisimple.

By "Tits' deformation theorem", we obtain

$$\begin{array}{cccc} \operatorname{Irr}(\mathcal{K}(\mathbf{v})\mathcal{H}) & \leftrightarrow & \operatorname{Irr}(\mathcal{K}(y)\mathcal{H}_{\phi}) & \leftrightarrow & \operatorname{Irr}(W) \\ \chi_{\mathbf{v}} & \mapsto & \chi_{\phi} & \mapsto & \chi \\ s_{\chi}(\mathbf{v}) & \mapsto & s_{\chi_{\phi}}(y) & \mapsto & |W|/\chi(1) \end{array}$$

Proposition

The Schur element $s_{\chi_{\phi}}(y)$ associated to the irreducible character χ_{ϕ} of $K(y)\mathcal{H}_{\phi}$ is a Laurent polynomial in y of the form

$$s_{\chi_{\phi}}(y) = \psi_{\chi,\phi} y^{a_{\chi,\phi}} \prod_{\Phi \in C_K} \Phi(y)^{n_{\chi,\phi}},$$

where $\psi_{\chi,\phi} \in \mathbb{Z}_K$, $a_{\chi,\phi} \in \mathbb{Z}$, $n_{\chi,\phi} \in \mathbb{N}$ and C_K is a set of K-cyclotomic polynomials.

Definition

We call Rouquier ring of K the \mathbb{Z}_K -subalgebra of K(y)

$$\mathcal{R} := \mathbb{Z}_{K}[y, y^{-1}, (y^{n} - 1)_{n \geq 1}^{-1}]$$

Definition

We call Rouquier ring of K the \mathbb{Z}_K -subalgebra of K(y)

$$\mathcal{R} := \mathbb{Z}_{\mathcal{K}}[y, y^{-1}, (y^n - 1)_{n \ge 1}^{-1}]$$

Let $\phi: v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and \mathcal{H}_{ϕ} the corresponding cyclotomic Hecke algebra. The Rouquier blocks of \mathcal{H}_{ϕ} are the blocks of the algebra \mathcal{RH}_{ϕ} .

Definition

We call Rouquier ring of K the \mathbb{Z}_K -subalgebra of K(y)

$$\mathcal{R} := \mathbb{Z}_{\mathcal{K}}[y, y^{-1}, (y^n - 1)_{n \ge 1}^{-1}]$$

Let $\phi: v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and \mathcal{H}_{ϕ} the corresponding cyclotomic Hecke algebra. The Rouquier blocks of \mathcal{H}_{ϕ} are the blocks of the algebra \mathcal{RH}_{ϕ} .

W Weyl group: Rouquier blocks \equiv "families of characters"

Definition

We call Rouquier ring of K the \mathbb{Z}_K -subalgebra of K(y)

$$\mathcal{R} := \mathbb{Z}_{\mathcal{K}}[y, y^{-1}, (y^n - 1)_{n \ge 1}^{-1}]$$

Let $\phi: v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and \mathcal{H}_{ϕ} the corresponding cyclotomic Hecke algebra. The Rouquier blocks of \mathcal{H}_{ϕ} are the blocks of the algebra \mathcal{RH}_{ϕ} .

W Weyl group : Rouquier blocks \equiv "families of characters" W c.r.g. (non-Weyl) : Rouquier blocks \equiv ?

The characters χ_{ϕ} and ψ_{ϕ} are in the same Rouquier block of \mathcal{H}_{ϕ} if and only if there exist a finite sequence $\chi_0, \chi_1, \ldots, \chi_n \in \mathrm{Irr}(W)$ and a finite sequence $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ of prime ideals of \mathcal{R} such that

- $(\chi_0)_\phi = \chi_\phi$ et $(\chi_n)_\phi = \psi_\phi$,
- $\bullet \ \forall j \ (1 \leq j \leq \textit{n}), \ (\chi_{j-1})_{\phi} \ \text{et} \ (\chi_{j})_{\phi} \ \text{are in the same block} \ \mathcal{R}_{\mathfrak{p}_{j}}\mathcal{H}_{\phi}.$

The characters χ_{ϕ} and ψ_{ϕ} are in the same Rouquier block of \mathcal{H}_{ϕ} if and only if there exist a finite sequence $\chi_0, \chi_1, \ldots, \chi_n \in \mathrm{Irr}(W)$ and a finite sequence $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ of prime ideals of \mathbb{Z}_K such that

- $(\chi_0)_\phi = \chi_\phi$ et $(\chi_n)_\phi = \psi_\phi$,
- $\forall j \ (1 \leq j \leq n)$, $(\chi_{j-1})_{\phi}$ et $(\chi_j)_{\phi}$ are in the same block of $\mathcal{R}_{\mathfrak{p}_j\mathcal{R}}\mathcal{H}_{\phi}$.

The characters χ_{ϕ} and ψ_{ϕ} are in the same Rouquier block of \mathcal{H}_{ϕ} if and only if there exist a finite sequence $\chi_0, \chi_1, \ldots, \chi_n \in \mathrm{Irr}(W)$ and a finite sequence $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ of prime ideals of \mathbb{Z}_K such that

- $(\chi_0)_\phi = \chi_\phi$ et $(\chi_n)_\phi = \psi_\phi$,
- $\forall j \ (1 \leq j \leq n)$, $(\chi_{j-1})_{\phi}$ et $(\chi_j)_{\phi}$ are in the same block of $\mathcal{R}_{\mathfrak{p}_j\mathcal{R}}\mathcal{H}_{\phi}$.

If $\Omega := \mathbb{Z}_K[y, y^{-1}]$, then $\mathcal{R}_{\mathfrak{p}\mathcal{R}} \simeq \Omega_{\mathfrak{p}\Omega}$ for all prime ideals \mathfrak{p} of \mathbb{Z}_K .

The characters χ_{ϕ} and ψ_{ϕ} are in the same Rouquier block of \mathcal{H}_{ϕ} if and only if there exist a finite sequence $\chi_0, \chi_1, \ldots, \chi_n \in \mathrm{Irr}(W)$ and a finite sequence $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ of prime ideals of \mathbb{Z}_K such that

- $(\chi_0)_\phi = \chi_\phi$ et $(\chi_n)_\phi = \psi_\phi$,
- $\forall j \ (1 \leq j \leq n)$, $(\chi_{j-1})_{\phi}$ et $(\chi_j)_{\phi}$ are in the same block of $\mathcal{R}_{\mathfrak{p}_j\mathcal{R}}\mathcal{H}_{\phi}$.

If $\Omega := \mathbb{Z}_K[y, y^{-1}]$, then $\mathcal{R}_{\mathfrak{p}\mathcal{R}} \simeq \Omega_{\mathfrak{p}\Omega}$ for all prime ideals \mathfrak{p} of \mathbb{Z}_K .

AIM: Determine the blocks $\Omega_{\mathfrak{p}\Omega}\mathcal{H}_{\phi}$.

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K . Set $A := \mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}]$.

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K . Set $A := \mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}]$.

Definition

A primitive monomial M in A is called p-essential for W if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K . Set $A := \mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}]$.

Definition

A primitive monomial M in A is called p-essential for W if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

1 $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K . Set $A := \mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}]$.

Definition

A primitive monomial M in A is called p-essential for W if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

- **1** $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$
- $\Psi(1) \in \mathfrak{p}.$

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K . Set $A := \mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}]$.

Definition

A primitive monomial M in A is called p-essential for W if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

- **1** $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$
- $\Psi(1) \in \mathfrak{p}.$

Let ϕ be a cyclotomic specialization. A monomial M in A is singular for ϕ if $\phi(M)=1$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\mathrm{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H} .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of Irr(W) into \mathfrak{p} -blocks of \mathcal{H} .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\mathrm{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H}_{ϕ} .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of Irr(W) into \mathfrak{p} -blocks of \mathcal{H} .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\mathrm{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H}_{ϕ} .

Theorem (C.)

For every \mathfrak{p} -essential monomial M for W, there exists a unique partition $\mathcal{B}^M_{\mathfrak{p}}(\mathcal{H})$ of $\mathrm{Irr}(W)$ with the following properties:

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of Irr(W) into \mathfrak{p} -blocks of \mathcal{H} .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\mathrm{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H}_{ϕ} .

Theorem (C.)

For every \mathfrak{p} -essential monomial M for W, there exists a unique partition $\mathcal{B}^M_{\mathfrak{p}}(\mathcal{H})$ of $\mathrm{Irr}(W)$ with the following properties:

• The parts of $\mathcal{B}^M_{\mathfrak{p}}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\mathrm{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H} .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\mathrm{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H}_{ϕ} .

Theorem (C.)

For every \mathfrak{p} -essential monomial M for W, there exists a unique partition $\mathcal{B}^M_{\mathfrak{p}}(\mathcal{H})$ of $\mathrm{Irr}(W)$ with the following properties:

- **1** The parts of $\mathcal{B}_{\mathfrak{p}}^{M}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.
- ② The partition $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ is the partition generated by the partitions $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ et $\mathcal{B}_{\mathfrak{p}}^{M}(\mathcal{H})$, where M runs over the set of all \mathfrak{p} -essential monomials which are singular for ϕ .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of Irr(W) into \mathfrak{p} -blocks of \mathcal{H} .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\mathrm{Irr}(W)$ into \mathfrak{p} -blocks of \mathcal{H}_{ϕ} .

Theorem (C.)

For every \mathfrak{p} -essential monomial M for W, there exists a unique partition $\mathcal{B}^M_{\mathfrak{p}}(\mathcal{H})$ of $\mathrm{Irr}(W)$ with the following properties:

- The parts of $\mathcal{B}^M_{\mathfrak{p}}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.
- ② The partition $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ is the partition generated by the partitions $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ et $\mathcal{B}_{\mathfrak{p}}^{M}(\mathcal{H})$, where M runs over the set of all \mathfrak{p} -essential monomials which are singular for ϕ .

Moreover, the partition $\mathcal{B}^M_{\mathfrak{p}}(\mathcal{H})$ coincides with the blocks of the algebra $A_{\mathfrak{q}_M}\mathcal{H}$, where $\mathfrak{q}_M:=(M-1)A+\mathfrak{p}A$.

The example of G_2

We denote the characters of G_2 as follows:

 $\chi_{1,0}, \ \chi_{1,6}, \ \chi_{1,3'}, \ \chi_{1,3''}, \ \chi_{2,1}, \ \chi_{2,2}.$

The example of G_2

We denote the characters of G_2 as follows:

$$\chi_{1,0}, \ \chi_{1,6}, \ \chi_{1,3'}, \ \chi_{1,3''}, \ \chi_{2,1}, \ \chi_{2,2}.$$

Schur elements: 2-essential in purple, 3-essential in green

$$s_1 = \begin{array}{c} \Phi_4(X_0X_1^{-1}) \cdot \Phi_4(Y_0Y_1^{-1}) \cdot \Phi_3(X_0Y_0X_1^{-1}Y_1^{-1}) \cdot \\ \Phi_6(X_0Y_0X_1^{-1}Y_1^{-1}) \end{array}$$

$$s_2 = 2 \cdot X_1^2 X_0^{-2} \cdot \Phi_3(X_0 Y_0 X_1^{-1} Y_1^{-1}) \cdot \Phi_6(X_0 Y_1 X_1^{-1} Y_0^{-1})$$

$$\Phi_4(x) = x^2 + 1$$
, $\Phi_3(x) = x^2 + x + 1$, $\Phi_6(x) = x^2 - x + 1$

The example of G_2

We denote the characters of G_2 as follows:

$$\chi_{1,0}, \ \chi_{1,6}, \ \chi_{1,3'}, \ \chi_{1,3''}, \ \chi_{2,1}, \ \chi_{2,2}.$$

Schur elements: 2-essential in purple, 3-essential in green

$$s_1 = \begin{array}{c} \Phi_4(X_0X_1^{-1}) \cdot \Phi_4(Y_0Y_1^{-1}) \cdot \Phi_3(X_0Y_0X_1^{-1}Y_1^{-1}) \cdot \\ \Phi_6(X_0Y_0X_1^{-1}Y_1^{-1}) \end{array}$$

$$s_2 = \ 2 \cdot X_1^2 X_0^{-2} \cdot \Phi_3(X_0 Y_0 X_1^{-1} Y_1^{-1}) \cdot \Phi_6(X_0 Y_1 X_1^{-1} Y_0^{-1})$$

$$\Phi_4(x) = x^2 + 1, \quad \Phi_3(x) = x^2 + x + 1, \quad \Phi_6(x) = x^2 - x + 1$$

 $\Phi_4(1) = 2 \qquad \Phi_3(1) = 3 \qquad \Phi_6(1) = 1$

4□ > 4ⓓ > 4≧ > 4≧ > ½ 99.0°

The 2-essential monomials for G_2 are:

$$\mathit{M}_1 := \mathit{X}_0 \mathit{X}_1^{-1} \ \text{ and } \ \mathit{M}_2 := \mathit{Y}_0 \mathit{Y}_1^{-1}.$$

The 2-essential monomials for G_2 are:

$$M_1 := X_0 X_1^{-1}$$
 and $M_2 := Y_0 Y_1^{-1}$.

The 3-essential monomials for G_2 are:

$$M_3 := X_0 Y_0 X_1^{-1} Y_1^{-1}$$
 and $M_4 := X_0 Y_1 X_1^{-1} Y_0^{-1}$.

The 2-essential monomials for G_2 are:

$$M_1 := X_0 X_1^{-1}$$
 and $M_2 := Y_0 Y_1^{-1}$.

The 3-essential monomials for G_2 are:

$$M_3 := X_0 Y_0 X_1^{-1} Y_1^{-1} \text{ and } M_4 := X_0 Y_1 X_1^{-1} Y_0^{-1}.$$

Monomial	$\mathcal{B}_2^M(\mathcal{H})$	$\mathcal{B}_3^M(\mathcal{H})$
1	$(\chi_{2,1},\chi_{2,2})$	-
M_1	$(\chi_{1,0},\chi_{1,3'}), (\chi_{2,1},\chi_{2,2}), (\chi_{1,6},\chi_{1,3''})$	-
M_2	$(\chi_{1,0},\chi_{1,3''}), (\chi_{2,1},\chi_{2,2}), (\chi_{1,6},\chi_{1,3'})$	-
<i>M</i> ₃	$(\chi_{2,1},\chi_{2,2})$	$(\chi_{1,0},\chi_{1,6},\chi_{2,2})$
M_4	$(\chi_{2,1},\chi_{2,2})$	$(\chi_{1,3'},\chi_{1,3''},\chi_{2,1})$

$$\phi^s: X_0 \mapsto y \quad Y_0 \mapsto y$$
$$X_1 \mapsto 1 \quad Y_1 \mapsto 1$$

$$\phi^s: X_0 \mapsto y \quad Y_0 \mapsto y$$
$$X_1 \mapsto 1 \quad Y_1 \mapsto 1$$

The only essential monomial singular for ϕ^s is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_{ϕ} are:

$$\phi^s: X_0 \mapsto y \quad Y_0 \mapsto y$$
$$X_1 \mapsto 1 \quad Y_1 \mapsto 1$$

The only essential monomial singular for ϕ^s is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_ϕ are:

$$(\chi_{1,0})$$
, $(\chi_{1,6})$, $(\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$.

$$\phi^s: X_0 \mapsto y \quad Y_0 \mapsto y$$
$$X_1 \mapsto 1 \quad Y_1 \mapsto 1$$

The only essential monomial singular for ϕ^s is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_{ϕ} are:

$$(\chi_{1,0})$$
, $(\chi_{1,6})$, $(\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$.

Determination of the Rouquier blocks of the group algebra

$$\phi^{s}: X_{0} \mapsto y \quad Y_{0} \mapsto y$$
$$X_{1} \mapsto 1 \quad Y_{1} \mapsto 1$$

The only essential monomial singular for ϕ^s is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_{ϕ} are:

$$(\chi_{1,0})$$
, $(\chi_{1,6})$, $(\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$.

Determination of the Rouquier blocks of the group algebra

$$\phi^W: X_0 \mapsto 1 \quad Y_0 \mapsto 1$$
 $X_1 \mapsto 1 \quad Y_1 \mapsto 1$

$$\phi^{s}: X_{0} \mapsto y \quad Y_{0} \mapsto y$$
$$X_{1} \mapsto 1 \quad Y_{1} \mapsto 1$$

The only essential monomial singular for ϕ^s is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_{ϕ} are:

$$(\chi_{1,0})$$
, $(\chi_{1,6})$, $(\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$.

Determination of the Rouquier blocks of the group algebra

$$\phi^W: X_0 \mapsto 1 \quad Y_0 \mapsto 1$$
 $X_1 \mapsto 1 \quad Y_1 \mapsto 1$

All essential monomials are singular for ϕ^{W} . We have:

$$\phi^{s}: X_{0} \mapsto y \quad Y_{0} \mapsto y$$
$$X_{1} \mapsto 1 \quad Y_{1} \mapsto 1$$

The only essential monomial singular for ϕ^s is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_{ϕ} are:

$$(\chi_{1,0})$$
, $(\chi_{1,6})$, $(\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$.

Determination of the Rouquier blocks of the group algebra

$$\phi^W: X_0 \mapsto 1 \quad Y_0 \mapsto 1$$

 $X_1 \mapsto 1 \quad Y_1 \mapsto 1$

All essential monomials are singular for ϕ^W . We have:

#1 Rouquier block
$$(\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$$

$$\phi^s: X_0 \mapsto y \quad Y_0 \mapsto y$$
$$X_1 \mapsto 1 \quad Y_1 \mapsto 1$$

The only essential monomial singular for ϕ^s is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_{ϕ} are:

$$(\chi_{1,0})$$
, $(\chi_{1,6})$, $(\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$.

Determination of the Rouquier blocks of the group algebra

$$\phi^W: X_0 \mapsto 1 \quad Y_0 \mapsto 1$$
$$X_1 \mapsto 1 \quad Y_1 \mapsto 1$$

All essential monomials are singular for ϕ^W . We have:

#1 Rouquier block
$$(\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$$

#2 2-blocks $(\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}), (\chi_{2,1}, \chi_{2,2})$

$$\phi^s: X_0 \mapsto y \quad Y_0 \mapsto y$$
$$X_1 \mapsto 1 \quad Y_1 \mapsto 1$$

The only essential monomial singular for ϕ^s is M_4 . Thus the Rouquier blocks of \mathcal{H}^s_{ϕ} are:

$$(\chi_{1,0})$$
, $(\chi_{1,6})$, $(\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$.

Determination of the Rouquier blocks of the group algebra

$$\phi^W: X_0 \mapsto 1 \quad Y_0 \mapsto 1$$
$$X_1 \mapsto 1 \quad Y_1 \mapsto 1$$

All essential monomials are singular for ϕ^W . We have:

#1 Rouquier block
$$(\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2})$$
 #2 2-blocks $(\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}), (\chi_{2,1}, \chi_{2,2})$ #2 3-blocks $(\chi_{1,0}, \chi_{1,6}, \chi_{2,2}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1})$