The symmetrising trace conjecture for Hecke algebras (joint work with C. Boura, E. Chavli & K. Karvounis)

Maria Chlouveraki

Université de Versailles - St Quentin

First Congress for Greek Mathematicians

Let V be a finite dimensional real vector space.

Let V be a finite dimensional real vector space.

A real reflection group is a finite subgroup of GL(V) generated by *reflections*, that is, elements of order 2 that fix a hyperplane pointwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let V be a finite dimensional real vector space.

A real reflection group is a finite subgroup of GL(V) generated by *reflections*, that is, elements of order 2 that fix a hyperplane pointwise.

(日) (四) (문) (문) (문)

Examples

- Dihedral groups \mathcal{D}_{2n} .
- Symmetric groups \mathfrak{S}_n .

Let V be a finite dimensional real vector space.

A real reflection group is a finite subgroup of GL(V) generated by *reflections*, that is, elements of order 2 that fix a hyperplane pointwise.

Examples

- Dihedral groups \mathcal{D}_{2n} .
- Symmetric groups \mathfrak{S}_n .

Let W be a real reflection group. Then W is a Coxeter group, that is, it has a presentation of the form

$$W = \langle s \in S \mid \underbrace{stst\dots}_{m_{st}} = \underbrace{tsts\dots}_{m_{st}} \quad \forall s \neq t \in S, \ s^2 = 1 \quad \forall s \in S \rangle.$$

<ロト <四ト <注入 <注下 <注下 <

Let V be a finite dimensional real vector space.

A real reflection group is a finite subgroup of GL(V) generated by *reflections*, that is, elements of order 2 that fix a hyperplane pointwise.

Examples

- Dihedral groups \mathcal{D}_{2n} .
- Symmetric groups \mathfrak{S}_n .

Let W be a real reflection group. Then W is a Coxeter group, that is, it has a presentation of the form

$$W = \langle s \in S \mid \underbrace{stst\dots}_{m_{st}} = \underbrace{tsts\dots}_{m_{st}} \quad \forall s \neq t \in S, \ s^2 = 1 \quad \forall s \in S
angle.$$

Every $w \in W$ is written as product $s_1 s_2 \dots s_r$ with $s_i \in S$. If r is minimal, then r is called the length of w and $s_1 s_2 \dots s_r$ is a reduced expression for w.

Let
$$W = \langle s \in S \mid \underbrace{ststst...}_{m_{st}} = \underbrace{tststs...}_{m_{st}}$$
 $\forall s \neq t \in S, s^2 = 1 \quad \forall s \in S \rangle.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let
$$W = \langle s \in S \mid \underbrace{ststst...}_{m_{st}} = \underbrace{tststs...}_{m_{st}}$$
 $\forall s \neq t \in S, \ s^2 = 1 \quad \forall s \in S \rangle$. Then

$$\mathcal{H}(W) = \left\langle (T_s)_{s \in S} \mid \underbrace{\frac{T_s T_t T_s T_t ...}_{m_{st}}}_{T_s^2 = a_s T_s + b_s} = \underbrace{T_t T_s T_t T_s...}_{m_{st}} \quad \forall s \neq t \in S \right\rangle$$

is the Iwahori–Hecke algebra of W, defined over $R_W := \mathbb{Z}[(a_s)_{s \in S}, (b_s^{\pm 1})_{s \in S}].$

Let
$$W = \langle s \in S \mid \underbrace{ststst...}_{m_{st}} = \underbrace{tststs...}_{m_{st}}$$
 $\forall s \neq t \in S, \ s^2 = 1 \quad \forall s \in S \rangle$. Then
$$\mathcal{H}(W) = \left\langle (T_s)_{s \in S} \mid \underbrace{\frac{T_s T_t T_s T_t ...}_{m_{st}}}_{T_s^2 = a_s T_s + b_s} = \underbrace{T_t T_s T_t T_s...}_{m_{st}} \quad \forall s \neq t \in S \right\rangle$$

is the Iwahori–Hecke algebra of W, defined over $R_W := \mathbb{Z}[(a_s)_{s \in S}, (b_s^{\pm 1})_{s \in S}]$.

Necessary condition: If s and t are conjugate in W, then $a_s = a_t$ and $b_s = b_t$.

Let
$$W = \langle s \in S \mid \underbrace{ststst...}_{m_{st}} = \underbrace{tststs...}_{m_{st}}$$
, $\forall s \neq t \in S$, $s^2 = 1$ $\forall s \in S \rangle$. Then

$$\mathcal{H}(W) = \left\langle (T_s)_{s \in S} \mid \underbrace{\frac{T_s T_t T_s T_t ...}_{m_{st}}}_{T_s^2 = a_s T_s + b_s} = \underbrace{T_t T_s T_t T_s ...}_{m_{st}} \quad \forall s \neq t \in S \right\rangle$$

is the Iwahori–Hecke algebra of W, defined over $R_W := \mathbb{Z}[(a_s)_{s \in S}, (b_s^{\pm 1})_{s \in S}].$

Necessary condition: If s and t are conjugate in W, then $a_s = a_t$ and $b_s = b_t$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$\mathfrak{S}_3 = \langle s, t \mid sts = tst, s^2 = t^2 = 1 \rangle$$

Let
$$W = \langle s \in S \mid \underbrace{ststst...}_{m_{st}} = \underbrace{tststs...}_{m_{st}}$$
, $\forall s \neq t \in S$, $s^2 = 1$, $\forall s \in S \rangle$. Then

$$\mathcal{H}(W) = \left\langle (T_s)_{s \in S} \mid \underbrace{\frac{T_s T_t T_s T_t ...}_{m_{st}}}_{T_s^2 = a_s T_s + b_s} = \underbrace{T_t T_s T_t T_s ...}_{m_{st}}$$
, $\forall s \neq t \in S$, $\forall s \in S$, $\forall s \neq t \in S$, $\forall s \in S$

is the Iwahori–Hecke algebra of W, defined over $R_W := \mathbb{Z}[(a_s)_{s \in S}, (b_s^{\pm 1})_{s \in S}].$

Necessary condition: If s and t are conjugate in W, then $a_s = a_t$ and $b_s = b_t$.

$$\mathfrak{S}_{3} = \langle s, t \mid sts = tst, s^{2} = t^{2} = 1 \rangle$$

$$\mathcal{H}(\mathfrak{S}_{3}) = \langle T_{s}, T_{t} \mid T_{s}T_{t}T_{s} = T_{t}T_{s}T_{t}, T_{s}^{2} = aT_{s} + b, T_{t}^{2} = aT_{t} + b \rangle$$

Let
$$W = \langle s \in S \mid \underbrace{ststst...}_{m_{st}} = \underbrace{tststs...}_{m_{st}}$$
, $\forall s \neq t \in S$, $s^2 = 1$, $\forall s \in S \rangle$. Then

$$\mathcal{H}(W) = \left\langle (T_s)_{s \in S} \mid \underbrace{\frac{T_s T_t T_s T_t ...}_{m_{st}}}_{T_s^2 = a_s T_s + b_s} = \underbrace{T_t T_s T_t T_s ...}_{m_{st}}$$
, $\forall s \neq t \in S$, $\forall s \in S$, $\forall s \neq t \in S$, $\forall s \in S$

is the Iwahori–Hecke algebra of W, defined over $R_W := \mathbb{Z}[(a_s)_{s \in S}, (b_s^{\pm 1})_{s \in S}].$

Necessary condition: If s and t are conjugate in W, then $a_s = a_t$ and $b_s = b_t$.

$$\mathfrak{S}_{3} = \langle s, t \mid sts = tst, s^{2} = t^{2} = 1 \rangle$$

$$\mathcal{H}(\mathfrak{S}_{3}) = \langle T_{s}, T_{t} \mid T_{s}T_{t}T_{s} = T_{t}T_{s}T_{t}, T_{s}^{2} = aT_{s} + b, T_{t}^{2} = aT_{t} + b \rangle$$

$$\mathcal{D}_{8} = \langle s, t \mid stst = tsts, s^{2} = t^{2} = 1 \rangle$$

Let
$$W = \langle s \in S \mid \underbrace{ststst...}_{m_{st}} = \underbrace{tststs...}_{m_{st}}$$
, $\forall s \neq t \in S$, $s^2 = 1$, $\forall s \in S \rangle$. Then

$$\mathcal{H}(W) = \left\langle (T_s)_{s \in S} \mid \underbrace{\frac{T_s T_t T_s T_t ...}_{m_{st}}}_{T_s^2 = a_s T_s + b_s} = \underbrace{T_t T_s T_t T_s ...}_{m_{st}}$$
, $\forall s \neq t \in S$, $\forall s \in S$, $\forall s \neq t \in S$, $\forall s \in S$

is the Iwahori–Hecke algebra of W, defined over $R_W := \mathbb{Z}[(a_s)_{s \in S}, (b_s^{\pm 1})_{s \in S}].$

Necessary condition: If s and t are conjugate in W, then $a_s = a_t$ and $b_s = b_t$.

$$\begin{split} \mathfrak{S}_{3} &= \langle s, t \mid sts = tst, \ s^{2} = t^{2} = 1 \rangle \\ \mathcal{H}(\mathfrak{S}_{3}) &= \langle T_{s}, T_{t} \mid T_{s}T_{t}T_{s} = T_{t}T_{s}T_{t}, \ T_{s}^{2} = aT_{s} + b, \ T_{t}^{2} = aT_{t} + b \rangle \\ \mathcal{D}_{8} &= \langle s, t \mid stst = tsts, \ s^{2} = t^{2} = 1 \rangle \\ \mathcal{H}(\mathcal{D}_{8}) &= \langle T_{s}, T_{t} \mid T_{s}T_{t}T_{s}T_{t} = T_{t}T_{s}T_{t}T_{s}, \ T_{s}^{2} = aT_{s} + b, \ T_{t}^{2} = cT_{t} + d \rangle \end{split}$$

Complex reflection groups

Let V be a finite dimensional complex vector space.

Complex reflection groups

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of GL(V) generated by *pseudo-reflections*, that is, elements of order ≥ 2 that fix a hyperplane pointwise.

Complex reflection groups

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of GL(V) generated by *pseudo-reflections*, that is, elements of order ≥ 2 that fix a hyperplane pointwise.

Theorem (Shephard–Todd)

Let $W \subset GL(V)$ be an irreducible complex reflection group (i.e., W acts irreducibly on V). Then one of the following assertions is true:

 W ≃ G(de, e, r), where G(de, e, r) is the group of all r × r monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a d-th root of unity.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• $W \cong G_n$ for some $n = 4, \ldots, 37$.

◆□> ◆□> ◆注> ◆注> 注

$$G_4 = \langle s, t \mid sts = tst, s^3 = 1, t^3 = 1 \rangle$$

$$G_{4} = \left\langle s, t \mid sts = tst, s^{3} = 1, t^{3} = 1 \right\rangle$$

$$\mathcal{H}(G_{4}) = \left\langle T_{s}, T_{t} \mid T_{s} T_{t} T_{s} = T_{t} T_{s} T_{t}, T_{s}^{3} = a T_{s}^{2} + b T_{s} + c, T_{t}^{3} = a T_{t}^{2} + b T_{t} + c \right\rangle$$
over $R_{G_{4}} = \mathbb{Z}[a, b, c^{\pm 1}].$

◆□> ◆舂> ◆注> ◆注> 注:

$$G_4 = \langle s, t \mid sts = tst, s^3 = 1, t^3 = 1 \rangle$$

$$\mathcal{H}(G_4) = \left\langle T_s, T_t \mid T_s = T_t T_s T_t, T_s = T_t T_s T_t, T_s^3 = a T_s^2 + b T_s + c, T_t^3 = a T_t^2 + b T_t + c \right\rangle$$

over $R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}].$

$$G_5 = \langle s, t \mid stst = tsts, s^3 = 1, t^3 = 1 \rangle$$

$$G_4 = \langle s, t \mid sts = tst, s^3 = 1, t^3 = 1 \rangle$$

$$\mathcal{H}(G_4) = \left\langle T_s, T_t \mid T_s = T_t T_s T_t, T_s = T_t T_s T_t, T_s^3 = a T_s^2 + b T_s + c, T_t^3 = a T_t^2 + b T_t + c \right\rangle$$

over $R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}].$

$$G_5 = \left\langle s, t \mid stst = tsts, s^3 = 1, t^3 = 1 \right\rangle$$

$$\mathcal{H}(G_4) = \left\langle T_s, T_t \right| \left\{ \begin{array}{c} T_s T_t T_s T_t = T_t T_s T_t T_s, \\ T_s^3 = a T_s^2 + b T_s + c, T_t^3 = d T_t^2 + e T_t + f \end{array} \right\rangle$$

over $R_{G_5} = \mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}].$

The Broué–Malle–Rouquier freeness conjecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Broué–Malle–Rouquier freeness conjecture

◆□> ◆圖> ◆注> ◆注> 注

Theorem (since October)

The algebra $\mathcal{H}(W)$ is a free R_W -module of rank |W|.

The Broué–Malle–Rouquier freeness conjecture

Theorem (since October)

The algebra $\mathcal{H}(W)$ is a free R_W -module of rank |W|.

It has been proved for :

- the real reflection groups by Bourbaki;
- the complex reflection groups G(de, e, r) by Ariki-Koike, Broué-Malle, Ariki;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- the group G₄ by Broué–Malle, Funar, Marin;
- the group G_{12} by Marin–Pfeiffer;
- the groups G_4, \ldots, G_{16} by Chavli;
- the groups G_{17} , G_{18} , G_{19} by Tsuchioka;
- the groups G_{20} , G_{21} by Marin;
- the groups G_{22}, \ldots, G_{37} by Marin, Marin–Pfeiffer.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. Recall that $|\mathcal{B}| = |W|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. Recall that $|\mathcal{B}| = |W|$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

<ロト <四ト <注入 <注下 <注下 <

• τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. Recall that $|\mathcal{B}| = |W|$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

- τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- **2** When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. Recall that $|\mathcal{B}| = |W|$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

(日) (문) (문) (문) (문)

- τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- **2** When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.
- \bigcirc τ satisfies an extra condition, which makes it unique.

Let \mathcal{B} be an R_W -basis for $\mathcal{H}(W)$. Recall that $|\mathcal{B}| = |W|$.

Conjecture

There exists a linear map $\tau : \mathcal{H}(W) \to R_W$ that satisfies the following conditions:

- τ is a symmetrising trace, that is, the matrix $A := (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}})$ is symmetric and invertible over R_W .
- **2** When $\mathcal{H}(W)$ specialises to the group algebra of W, τ becomes the canonical symmetrising trace given by $\tau(w) = \delta_{1w}$ for all $w \in W$.

 \bigcirc τ satisfies an extra condition, which makes it unique.

It has been proved for :

- the real reflection groups by Bourbaki;
- the complex reflection groups G(de, e, r) by Bremke–Malle, Malle–Mathas;
- the groups G_4 , G_{12} , G_{22} , G_{24} by Malle–Michel (G_4 also by Marin–Wagner).

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in B_n})$.
We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W .

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for n = 4, ..., 16. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for n = 4, ..., 16. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify \mathcal{B}_n accordingly.

We have $|G_4| = 24$, $|G_5| = 72$, $|G_6| = 48$, $|G_7| = 144$, $|G_8| = 96$.

STEP 1: Let $n \in \{4, ..., 8\}$. Take a basis \mathcal{B}_n for each $\mathcal{H}(G_n)$ and define a linear map τ on $\mathcal{H}(G_n)$ by setting $\tau(b) := \delta_{1b}$ for all $b \in \mathcal{B}_n$. We must have $1 \in \mathcal{B}_n$ and $\mathcal{B}_n = W$ when $\mathcal{H}(W)$ specialises to the group algebra of W. By construction, \mathcal{B}_n satisfies the second condition of the BMM symmetrising trace conjecture.

If $h \in \mathcal{H}(G_n)$, then $\tau(h)$ is the coefficient of 1 when h is expressed as a linear combination of the elements of \mathcal{B}_n .

STEP 2: Calculate the matrix $A = (\tau(b_i b_j)_{b_i, b_j \in \mathcal{B}_n})$. Check whether A is symmetric and invertible over R_W . If yes, then τ satisfies the first condition of the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for $\mathcal{H}(G_n)$ for n = 4, ..., 16. However, note that not any basis will work for the proof of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify \mathcal{B}_n accordingly.

STEP 3: Check that the extra third condition holds.

For any $b_i, b_j \in B_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of B_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

- 1. The basis \mathcal{B}_n .
- 12. The braid, positive and inverse Hecke relations (for example, $s^{-1} = c^{-1}s^2 ac^{-1}s bc^{-1}$).
- 13. The "special cases": these are some equalities computed by hand which express a given element of $\mathcal{H}(G_n)$ as a sum of other elements in $\mathcal{H}(G_n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For any $b_i, b_j \in \mathcal{B}_n$, our C++ program expresses $b_i b_j$ as a linear combination of the elements of \mathcal{B}_n . Then $\tau(b_i b_j)$ is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

- 11. The basis \mathcal{B}_n .
- 12. The braid, positive and inverse Hecke relations (for example, $s^{-1} = c^{-1}s^2 ac^{-1}s bc^{-1}$).
- 13. The "special cases": these are some equalities computed by hand which express a given element of $\mathcal{H}(G_n)$ as a sum of other elements in $\mathcal{H}(G_n)$.

The case of G_4

We have
$$\mathcal{B}_4 = \begin{cases} 1, s, s^2, t^2, t, t^2s, ts, t^2s^2, ts^2, st^2, st, st^2s, sts, st^2s^2, sts^2, \\ s^2t^2, s^2t, s^2t^2s, s^2ts, s^2t^2s^2, s^2ts^2, ststst, stststs, stststs^2 \end{cases}$$

Running the C++ program takes about 1 hour on an Intel Core i5 CPU.

Let $n \in \{5, ..., 8\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $n \in \{5, ..., 8\}$. Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n .

Let $n \in \{5, ..., 8\}$. Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis \mathcal{B}_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

From now on, we identify T_s with s and T_t with t.

Let $n \in \{5, ..., 8\}$. Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n .

From now on, we identify T_s with s and T_t with t.

There exists a central element $z \in Z(\mathcal{H}(G_n))$, and a subset \mathcal{E}_n of \mathcal{B}_n with $1, s, t \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \mid e \in \mathcal{E}_n, \ k = 0, 1, \dots, |Z(G_n)| - 1 \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $n \in \{5, ..., 8\}$. Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n .

From now on, we identify T_s with s and T_t with t.

There exists a central element $z \in Z(\mathcal{H}(G_n))$, and a subset \mathcal{E}_n of \mathcal{B}_n with $1, s, t \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{z^k e \mid e \in \mathcal{E}_n, \ k = 0, 1, \ldots, |Z(G_n)| - 1\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We have $|\mathcal{E}_n| = 12$ for n = 5, 6, 7 and $|\mathcal{E}_8| = 24$.

Let $n \in \{5, ..., 8\}$. Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n .

From now on, we identify T_s with s and T_t with t.

There exists a central element $z \in Z(\mathcal{H}(G_n))$, and a subset \mathcal{E}_n of \mathcal{B}_n with $1, s, t \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \mid e \in \mathcal{E}_n, \ k = 0, 1, \dots, |Z(G_n)| - 1 \}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

We have $|\mathcal{E}_n| = 12$ for n = 5, 6, 7 and $|\mathcal{E}_8| = 24$.

The curious case of G_7

3 elements have to be replaced!

Let $n \in \{5, ..., 8\}$. Our SAGE program produces the matrix A row by row, using the distinctive pattern of the basis B_n .

From now on, we identify T_s with s and T_t with t.

There exists a central element $z \in Z(\mathcal{H}(G_n))$, and a subset \mathcal{E}_n of \mathcal{B}_n with $1, s, t \in \mathcal{E}_n$ such that

$$\mathcal{B}_n = \{ z^k e \mid e \in \mathcal{E}_n, \ k = 0, 1, \dots, |Z(G_n)| - 1 \}.$$

We have $|\mathcal{E}_n| = 12$ for n = 5, 6, 7 and $|\mathcal{E}_8| = 24$.

The curious case of G_7

3 elements have to be replaced!

The inputs of the SAGE algorithm are the coefficients of the following elements when written as linear combinations of the elements of \mathcal{B}_n :

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

11.
$$sb_j$$
 for all $b_j \in \mathcal{B}_n$.

12.
$$tb_j$$
 for all $b_j \in \mathcal{B}_n$.

$$|3 _{7}|Z(G_{n})| = 7 \cdot 7 |Z(G_{n})| - 1$$

• $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$.

H(*G*₅) = ⟨*s*, *t* | *stst* = *tsts*, *s*³ = *as*² + *bs* + *c*, *t*³ = *dt*² + *et* + *f*⟩. *E*₅ = {1, *s*, *s*², *t*, *t*², *st*, *s*²*t*, *st*², *s*²*t*², *t*⁻¹*s*, *t*⁻¹*st*, *t*⁻¹*st*²}

(日) (四) (문) (문) (문)

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$

(日) (四) (문) (문) (문)

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

● *z* = *stst*.

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$.
- $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- z = stst.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

• $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$. • $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$ • z = stst.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$.

• $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$. • $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$ • z = stst.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$. We observe that we have:

- $\mathcal{H}(G_5) = \langle s, t \mid stst = tsts, s^3 = as^2 + bs + c, t^3 = dt^2 + et + f \rangle$. • $\mathcal{E}_5 = \{1, s, s^2, t, t^2, st, s^2t, st^2, s^2t^2, t^{-1}s, t^{-1}st, t^{-1}st^2\} = \{b_1, b_2, \dots, b_{12}\}.$ • z = stst.
- $\mathcal{B}_5 = \{z^k b_m \mid m = 1, 2, \dots, 12, k = 0, 1, \dots, 5\}.$

We set $b_{12k+m} := z^k b_m$. We observe that we have:

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $sb_j = \sum_I \lambda_{j,I}^s b_I$, $tb_j = \sum_I \lambda_{j,I}^t b_I$ and $z^6 = \sum_I \mu_I b_I$.

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_I \lambda_{j,I}^s b_I$$
, $tb_j = \sum_I \lambda_{j,I}^t b_I$ and $z^6 = \sum_I \mu_I b_I$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1}b_l).$$

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_I \lambda_{j,I}^s b_I$$
, $tb_j = \sum_I \lambda_{j,I}^t b_I$ and $z^6 = \sum_I \mu_I b_I$.

Examples

• $\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1}b_l).$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_l \lambda_{j,l}^s(\tau(b_{12k+5}b_l) - d\tau(b_{12k+4}b_l) - e\tau(b_{12k+1}b_l)).$$

(日) (四) (문) (문) (문)

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_I \lambda_{j,I}^s b_I$$
, $tb_j = \sum_I \lambda_{j,I}^t b_I$ and $z^6 = \sum_I \mu_I b_I$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1}b_l).$$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_l \lambda_{j,l}^s(\tau(b_{12k+5}b_l) - d\tau(b_{12k+4}b_l) - e\tau(b_{12k+1}b_l)).$$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_I \lambda_{j,I}^s b_I$$
, $tb_j = \sum_I \lambda_{j,I}^t b_I$ and $z^6 = \sum_I \mu_I b_I$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1}b_l).$$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_l \lambda_{j,l}^s(\tau(b_{12k+5}b_l) - d\tau(b_{12k+4}b_l) - e\tau(b_{12k+1}b_l)).$$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

• If $1 \leq j \leq 12(6-k)$, then we have $b_{12k+1}b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1}b_j) = 0$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_I \lambda_{j,I}^s b_I$$
, $tb_j = \sum_I \lambda_{j,I}^t b_I$ and $z^6 = \sum_I \mu_I b_I$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_I \lambda_{j,I}^t \tau(b_{12k+1}b_I).$$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_l \lambda_{j,l}^s(\tau(b_{12k+5}b_l) - d\tau(b_{12k+4}b_l) - e\tau(b_{12k+1}b_l)).$$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leq j \leq 12(6-k)$, then we have $b_{12k+1}b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1}b_j) = 0$.
- If $12(6-k) < j \leq 72$, then $b_{12k+1}b_j = z^k b_j = z^{k-6}b_j z^6 = b_{12k+j-72} \cdot z^6$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let $j \in \{1, \ldots, 72\}$. Using the C++ program, we have expressed sb_j , tb_j and $z^6 = b_{37}^2$ as linear combinations of the elements of \mathcal{B}_5 with coefficients in $\mathbb{Z}[a, b, c^{\pm 1}, d, e, f^{\pm 1}]$.

Let
$$sb_j = \sum_I \lambda_{j,I}^s b_I$$
, $tb_j = \sum_I \lambda_{j,I}^t b_I$ and $z^6 = \sum_I \mu_I b_I$.

Examples

•
$$\tau(b_{12k+4}b_j) = \tau(b_{12k+1}tb_j) = \sum_l \lambda_{j,l}^t \tau(b_{12k+1}b_l).$$

•
$$\tau(b_{12k+10}b_j) = f^{-1}\sum_l \lambda_{j,l}^s(\tau(b_{12k+5}b_l) - d\tau(b_{12k+4}b_l) - e\tau(b_{12k+1}b_l)).$$

We now consider the case of $b_{12k+1} = z^k$, for $k \neq 0$. We distinguish two cases:

- If $1 \leq j \leq 12(6-k)$, then we have $b_{12k+1}b_j \in \mathcal{B}_5$, whence $\tau(b_{12k+1}b_j) = 0$.
- If $12(6-k) < j \le 72$, then $b_{12k+1}b_j = z^k b_j = z^{k-6}b_j z^6 = b_{12k+j-72} \cdot z^6$. We get

$$\tau(b_{12k+1}b_j) = \tau(b_{12k+j-72} \cdot z^6) = \sum_l \mu_l \tau(b_{12k+j-72} b_l).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Malle and Michel have shown that, since

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Malle and Michel have shown that, since

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$B_n = \{ T_w \mid w \in G_n \},$$

2
$$\tau(b) = \delta_{1b}$$
 for all $b \in \mathcal{B}_n$, and

Malle and Michel have shown that, since

$$B_n = \{ T_w \mid w \in G_n \},$$

- 2 $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
- **③** \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

Malle and Michel have shown that, since

$$B_n = \{ T_w \mid w \in G_n \},$$

2)
$$au(b) = \delta_{1b}$$
 for all $b \in \mathcal{B}_n$, and

3 \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$au\left(z^{|\mathcal{Z}(\mathcal{G}_n)|}b^{-1}
ight)=0 \quad ext{ for all } b\in \mathcal{B}_n\setminus\{1\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで
The extra condition

Malle and Michel have shown that, since

$$B_n = \{ T_w \mid w \in G_n \},$$

2)
$$au(b) = \delta_{1b}$$
 for all $b \in \mathcal{B}_n$, and

③ \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$au\left(z^{|Z(G_n)|}b^{-1}
ight)=0 \quad ext{ for all } b\in \mathcal{B}_n\setminus\{1\}.$$

(日) (四) (코) (코) (코) (코)

• We used GAP to prove the extra condition for G_4 , G_6 and G_8 .

The extra condition

Malle and Michel have shown that, since

$$B_n = \{ T_w \mid w \in G_n \},$$

- 2 $\tau(b) = \delta_{1b}$ for all $b \in \mathcal{B}_n$, and
- **③** \mathcal{B}_n is a basis of $\mathcal{H}(G_n)$ as an R_{G_n} -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

$$au\left(z^{|Z(G_n)|}b^{-1}
ight)=0 \quad ext{ for all } b\in \mathcal{B}_n\setminus\{1\}.$$

- We used GAP to prove the extra condition for G_4 , G_6 and G_8 .
- We directly proved the extra condition for G_5 and G_7 , by expressing $\tau (z^{|Z(G_n)|}b^{-1})$ as a linear combination of entries of the matrix A.

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, \ldots, 8\}$. The BMM symmetrising trace conjecture holds for G_n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, ..., 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of \mathcal{B}_n , for all $b_j \in \mathcal{B}_n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, ..., 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of \mathcal{B}_n , for all $b_j \in \mathcal{B}_n$ (in the case of G_7 , the product of the third generator with any b_j is deduced from the other two).

(日) (四) (문) (문) (문)

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, \ldots, 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of \mathcal{B}_n , for all $b_j \in \mathcal{B}_n$ (in the case of G_7 , the product of the third generator with any b_j is deduced from the other two). This in fact allows us to express any product of the generators, and thus any element, of $\mathcal{H}(G_n)$ as a linear combination of the elements of \mathcal{B}_n .

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, ..., 8\}$. The BMM symmetrising trace conjecture holds for G_n .

Our C++ program has expressed sb_j and tb_j as linear combinations of the elements of \mathcal{B}_n , for all $b_j \in \mathcal{B}_n$ (in the case of G_7 , the product of the third generator with any b_j is deduced from the other two). This in fact allows us to express any product of the generators, and thus any element, of $\mathcal{H}(G_n)$ as a linear combination of the elements of \mathcal{B}_n .

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem (Boura–Chavli–C.–Karvounis)

Let $n \in \{4, ..., 8\}$. The set \mathcal{B}_n is a basis for $\mathcal{H}(G_n)$ as an R_{G_n} -module. In particular, the BMR freeness conjecture holds for G_n .