## Schur elements for Hecke algebras

## Maria Chlouveraki

Université de Versailles - St Quentin


Finite Chevalley groups, reflection groups and braid groups
A conference in honour of Professor Jean Michel

What is a
Schur element?

- $R$ be a commutative integral domain ;
- $A$ be an $R$-algebra, free and finitely generated as an $R$-module ;
- $K$ be a splitting field for $A$.

We write $K A:=K \otimes_{R} A$.

- $R$ be a commutative integral domain ;
- $A$ be an $R$-algebra, free and finitely generated as an $R$-module ;
- $K$ be a splitting field for $A$.

We write $K A:=K \otimes_{R} A$.

A symmetrising trace on the algebra $A$ is a linear map $\tau: A \rightarrow R$ such that
(1) $\tau(a b)=\tau(b a)$ for all $a, b \in A$, and
(2) the map $\widehat{\tau}: A \rightarrow \operatorname{Hom}_{R}(A, R), a \mapsto(x \mapsto \tau(a x))$ is an isomorphism of $A$-bimodules.

- $R$ be a commutative integral domain ;
- $A$ be an $R$-algebra, free and finitely generated as an $R$-module ;
- $K$ be a splitting field for $A$.

We write $K A:=K \otimes_{R} A$.

A symmetrising trace on the algebra $A$ is a linear map $\tau: A \rightarrow R$ such that
(1) $\tau(a b)=\tau(b a)$ for all $a, b \in A$, and
(2) the map $\widehat{\tau}: A \rightarrow \operatorname{Hom}_{R}(A, R), a \mapsto(x \mapsto \tau(a x))$ is an isomorphism of $A$-bimodules.

## Example

Let $G$ be a finite group. The linear map $\tau: \mathbb{Z}[G] \rightarrow \mathbb{Z}, \quad \sum_{g \in G} r_{g} g \mapsto r_{1}$ is the canonical symmetrising trace on $\mathbb{Z}[G]$.

Let $E$ be a simple $K A$-module and let $\chi_{E}$ be the corresponding character. The map $\tau$ can be extended to $K A$ by extension of scalars. We have:

$$
\widehat{\tau}^{-1}\left(\chi_{E}\right) \in Z(K A) .
$$

Let $E$ be a simple $K A$-module and let $\chi_{E}$ be the corresponding character. The map $\tau$ can be extended to $K A$ by extension of scalars. We have:

$$
\widehat{\tau}^{-1}\left(\chi_{E}\right) \in Z(K A) .
$$

The above element acts on $E$ as a scalar; we call this scalar the Schur element of $E$ with respect to $\tau$ and denote it by $S_{E}$.

Let $E$ be a simple $K A$-module and let $\chi_{E}$ be the corresponding character. The map $\tau$ can be extended to $K A$ by extension of scalars. We have:

$$
\widehat{\tau}^{-1}\left(\chi_{E}\right) \in Z(K A)
$$

The above element acts on $E$ as a scalar; we call this scalar the Schur element of $E$ with respect to $\tau$ and denote it by $S_{E}$.

We have $s_{E} \in R_{K}$, where $R_{K}$ denotes the integral closure of $R$ in $K$.

Let $E$ be a simple $K A$-module and let $\chi_{E}$ be the corresponding character. The map $\tau$ can be extended to $K A$ by extension of scalars. We have:

$$
\widehat{\tau}^{-1}\left(\chi_{E}\right) \in Z(K A) .
$$

The above element acts on $E$ as a scalar; we call this scalar the Schur element of $E$ with respect to $\tau$ and denote it by $S_{E}$.

We have $s_{E} \in R_{K}$, where $R_{K}$ denotes the integral closure of $R$ in $K$.

## Example

Let $G$ be a finite group and let $\tau$ be the canonical symmetrising trace on $A:=\mathbb{Z}[G]$. Let $K$ be an algebraically closed field of characteristic 0 , and let $E \in \operatorname{Irr}(K A)$. We have $s_{E}=|G| / \chi_{E}(1) \in \mathbb{Z}_{K} \cap \mathbb{Q}=\mathbb{Z}$.
We have thus shown that $\chi_{E}(1)$ divides $|G|$.

## What are

## Schur elements

## useful for?

(1) If $E \in \operatorname{Irr}(K A)$, then $E$ is projective if and only if $s_{E} \neq 0$.
(1) If $E \in \operatorname{Ir}(K A)$, then $E$ is projective if and only if $s_{E} \neq 0$.
(2) The algebra $K A$ is semisimple if and only if $s_{E} \neq 0$ for all $E \in \operatorname{Irr}(K A)$.
(1) If $E \in \operatorname{Irr}(K A)$, then $E$ is projective if and only if $s_{E} \neq 0$.
(2) The algebra $K A$ is semisimple if and only if $s_{E} \neq 0$ for all $E \in \operatorname{Irr}(K A)$. If this is the case, then:

- We have

$$
\tau=\sum_{E \in \operatorname{Irr}(K A)} \frac{1}{s_{E}} \chi_{E} .
$$

(1) If $E \in \operatorname{Irr}(K A)$, then $E$ is projective if and only if $s_{E} \neq 0$.
(2) The algebra $K A$ is semisimple if and only if $s_{E} \neq 0$ for all $E \in \operatorname{Irr}(K A)$. If this is the case, then:

- We have

$$
\tau=\sum_{E \in \operatorname{Irr}(K A)} \frac{1}{s_{E}} \chi_{E} .
$$

- The blocks of $A$ are the non-empty subsets $B$ of $\operatorname{Irr}(K A)$ that are minimal with respect to the property:

$$
\sum_{E \in B} \frac{1}{s_{E}} \chi_{E}(a) \in R \quad \forall a \in A .
$$

(1) If $E \in \operatorname{Irr}(K A)$, then $E$ is projective if and only if $s_{E} \neq 0$.
(2) The algebra $K A$ is semisimple if and only if $s_{E} \neq 0$ for all $E \in \operatorname{Irr}(K A)$. If this is the case, then:

- We have

$$
\tau=\sum_{E \in \operatorname{Irr}(K A)} \frac{1}{s_{E}} \chi_{E} .
$$

- The blocks of $A$ are the non-empty subsets $B$ of $\operatorname{Irr}(K A)$ that are minimal with respect to the property:

$$
\sum_{E \in B} \frac{1}{s_{E}} \chi_{E}(a) \in R \quad \forall a \in A .
$$

(3) Let $\theta: R \rightarrow L:=\operatorname{Frac}(\theta(R))$ be a ring homomorphism. Assume that $R_{K}=R$ and that the algebra $L A$ is split. Then:
(1) If $E \in \operatorname{Irr}(K A)$, then $E$ is projective if and only if $s_{E} \neq 0$.
(2) The algebra $K A$ is semisimple if and only if $s_{E} \neq 0$ for all $E \in \operatorname{Irr}(K A)$. If this is the case, then:

- We have

$$
\tau=\sum_{E \in \operatorname{Irr}(K A)} \frac{1}{s_{E}} \chi_{E} .
$$

- The blocks of $A$ are the non-empty subsets $B$ of $\operatorname{Irr}(K A)$ that are minimal with respect to the property:

$$
\sum_{E \in B} \frac{1}{s_{E}} \chi_{E}(a) \in R \quad \forall a \in A .
$$

(3) Let $\theta: R \rightarrow L:=\operatorname{Frac}(\theta(R))$ be a ring homomorphism. Assume that $R_{K}=R$ and that the algebra $L A$ is split. Then:

- LA is semisimple if and only if $\theta\left(s_{E}\right) \neq 0$ for all $E \in \operatorname{Irr}(K A)$.
(1) If $E \in \operatorname{Irr}(K A)$, then $E$ is projective if and only if $s_{E} \neq 0$.
(2) The algebra $K A$ is semisimple if and only if $s_{E} \neq 0$ for all $E \in \operatorname{Irr}(K A)$. If this is the case, then:
- We have

$$
\tau=\sum_{E \in \operatorname{Irr}(K A)} \frac{1}{s_{E}} \chi_{E} .
$$

- The blocks of $A$ are the non-empty subsets $B$ of $\operatorname{Irr}(K A)$ that are minimal with respect to the property:

$$
\sum_{E \in B} \frac{1}{s_{E}} \chi_{E}(a) \in R \quad \forall a \in A .
$$

(3) Let $\theta: R \rightarrow L:=\operatorname{Frac}(\theta(R))$ be a ring homomorphism. Assume that $R_{K}=R$ and that the algebra $L A$ is split. Then:

- LA is semisimple if and only if $\theta\left(s_{E}\right) \neq 0$ for all $E \in \operatorname{Irr}(K A)$.
- If $\theta\left(s_{E}\right) \neq 0$ for some $E \in \operatorname{Irr}(K A)$, then $E$ forms a block of defect 0 .


Let $V$ be a finite dimensional complex vector space. A complex reflection group $W$ is a finite subgroup of $\mathrm{GL}(V)$ generated by pseudo-reflections, i.e., elements whose vector space of fixed points is a hyperplane.

Let $V$ be a finite dimensional complex vector space. A complex reflection group $W$ is a finite subgroup of $\mathrm{GL}(V)$ generated by pseudo-reflections, i.e., elements whose vector space of fixed points is a hyperplane.

## Theorem (Shephard-Todd)

Let $W \subset \mathrm{GL}(V)$ be an irreducible complex reflection group (i.e., $W$ acts irreducibly on $V$ ). Then one of the following assertions is true:

- $(W, V) \cong\left(\mathfrak{S}_{r}, \mathbb{C}^{r-1}\right)$.
- $(W, V) \cong\left(G(d e, e, r), \mathbb{C}^{r}\right)$, where $G(d e, e, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a $d$-th root of unity.
- $(W, V)$ is isomorphic to one of the 34 exceptional groups $G_{n}, n=4, \ldots, 37$.

Every complex reflection group $W$ has a presentation "à la Coxeter" given by generators and relations. The generic Hecke algebra $\mathcal{H}(W)$ of $W$ can be viewed as a deformation of the group algebra of $W$.

Every complex reflection group $W$ has a presentation "à la Coxeter" given by generators and relations. The generic Hecke algebra $\mathcal{H}(W)$ of $W$ can be viewed as a deformation of the group algebra of $W$.

## Example

The generic Hecke algebra of

$$
\left.G_{6}=\langle s, t| \text { ststst }=t s t s t s, s^{2}=t^{3}=1\right\rangle
$$

is

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-u_{s, 0}\right)\left(T_{s}-u_{s, 1}\right)=0, \\
\left(T_{t}-u_{t, 0}\right)\left(T_{t}-u_{t, 1}\right)\left(T_{t}-u_{t, 2}\right)=0
\end{array}
\end{array}\right\rangle .
$$

Every complex reflection group $W$ has a presentation "à la Coxeter" given by generators and relations. The generic Hecke algebra $\mathcal{H}(W)$ of $W$ can be viewed as a deformation of the group algebra of $W$.

## Example

The generic Hecke algebra of

$$
\left.G_{6}=\langle s, t| \text { ststst }=t s t s t s, s^{2}=t^{3}=1\right\rangle
$$

is

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-u_{s, 0}\right)\left(T_{s}-u_{s, 1}\right)=0, \\
\left(T_{t}-u_{t, 0}\right)\left(T_{t}-u_{t, 1}\right)\left(T_{t}-u_{t, 2}\right)=0
\end{array}
\end{array}\right\rangle .
$$

Set $\zeta_{d}:=\exp (2 \pi i / d)$. The algebra $\mathcal{H}\left(G_{6}\right)$ specialises to $\mathbb{Z}\left[G_{6}\right]$ when

$$
u_{s, 0} \mapsto 1, u_{s, 0} \mapsto-1, u_{t, 0} \mapsto 1, u_{t, 1} \mapsto \zeta_{3}, u_{t, 2} \mapsto \zeta_{3}^{2} .
$$

Every complex reflection group $W$ has a presentation "à la Coxeter" given by generators and relations. The generic Hecke algebra $\mathcal{H}(W)$ of $W$ can be viewed as a deformation of the group algebra of $W$.

## Example

The generic Hecke algebra of

$$
\left.G_{6}=\langle s, t| \text { ststst }=t s t s t s, s^{2}=t^{3}=1\right\rangle
$$

is

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-u_{s, 0}\right)\left(T_{s}-u_{s, 1}\right)=0, \\
\left(T_{t}-u_{t, 0}\right)\left(T_{t}-u_{t, 1}\right)\left(T_{t}-u_{t, 2}\right)=0
\end{array}
\end{array}\right\rangle .
$$

Set $\zeta_{d}:=\exp (2 \pi i / d)$. The algebra $\mathcal{H}\left(G_{6}\right)$ specialises to $\mathbb{Z}\left[G_{6}\right]$ when

$$
u_{s, 0} \mapsto 1, u_{s, 0} \mapsto-1, u_{t, 0} \mapsto 1, u_{t, 1} \mapsto \zeta_{3}, u_{t, 2} \mapsto \zeta_{3}^{2} .
$$

More generally, $\mathcal{H}(W)$ is a $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$-algebra, where $\mathbf{u}:=\left(u_{s, j}\right)_{s, j=0, \ldots, e_{s}-1}$.

Every complex reflection group $W$ has a presentation "à la Coxeter" given by generators and relations. The generic Hecke algebra $\mathcal{H}(W)$ of $W$ can be viewed as a deformation of the group algebra of $W$.

## Example

The generic Hecke algebra of

$$
\left.G_{6}=\langle s, t| \text { ststst }=t s t s t s, s^{2}=t^{3}=1\right\rangle
$$

is

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-u_{s, 0}\right)\left(T_{s}-u_{s, 1}\right)=0, \\
\left(T_{t}-u_{t, 0}\right)\left(T_{t}-u_{t, 1}\right)\left(T_{t}-u_{t, 2}\right)=0
\end{array}
\end{array}\right\rangle .
$$

Set $\zeta_{d}:=\exp (2 \pi i / d)$. The algebra $\mathcal{H}\left(G_{6}\right)$ specialises to $\mathbb{Z}\left[G_{6}\right]$ when

$$
u_{s, 0} \mapsto 1, u_{s, 0} \mapsto-1, u_{t, 0} \mapsto 1, u_{t, 1} \mapsto \zeta_{3}, u_{t, 2} \mapsto \zeta_{3}^{2} .
$$

More generally, $\mathcal{H}(W)$ is a $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$-algebra, where $\mathbf{u}:=\left(u_{s, j}\right)_{s, j=0, \ldots, e_{s}-1}$.
The algebra $\mathcal{H}(W)$ specialises to $\mathbb{Z}[W]$ when $u_{s, j} \mapsto \zeta_{e_{s}}^{j}$ for all $s, j$.

(1) Representation theory of finite reductive groups.
(1) Representation theory of finite reductive groups.
(2) "Spetses" programme.
(1) Representation theory of finite reductive groups.
(2) "Spetses" programme.
(3) Representation theory of Cherednik algebras.
(1) Representation theory of finite reductive groups.
(2) "Spetses" programme.
(3) Representation theory of Cherednik algebras.
(4) Knot theory.
(1) Representation theory of finite reductive groups.
(2) "Spetses" programme.
(3) Representation theory of Cherednik algebras.
(4) Knot theory.
(5) Quantum groups.

Are there Schur elements for Hecke algebras?

## Conjectures (Broué-Malle-Michel-Rouquier)

(1) Freeness: The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$-module of rank $|W|$.
(2) Trace: There exists a canonical symmetrising trace $\tau$ on $\mathcal{H}(W)$ that satisfies certain canonicality conditions; the map $\tau$ specialises to the canonical symmetrising trace on the group algebra of $W$ when $u_{s, j} \mapsto \zeta_{e_{s}}^{j}$.

## Conjectures (Broué-Malle-Michel-Rouquier)

(1) Freeness: The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$-module of rank $|W|$.
(2) Trace: There exists a canonical symmetrising trace $\tau$ on $\mathcal{H}(W)$ that satisfies certain canonicality conditions; the map $\tau$ specialises to the canonical symmetrising trace on the group algebra of $W$ when $u_{s, j} \mapsto \zeta_{e_{s}}^{j}$.

The Freeness Conjecture is verified for:

- all finite Coxeter groups ;
- $G(d e, e, r)$ (Ariki-Koike, Broué-Malle-Michel) ;
- all exceptional groups except for $G_{17}, \ldots, G_{21}$ (Chavli, Marin, Marin-Pfeiffer).

The Trace Conjecture is verified for:

- all finite Coxeter groups ;
- $G(d e, e, r)(B M M, B r e m k e-M a l l e, ~ M a l l e-M a t h a s, ~ G e c k-l a n c u-M a l l e) ; ~$
- the exceptional groups $G_{4}, G_{12}, G_{22}$ and $G_{24}$ (Malle-Michel).

Let $K \subseteq \mathbb{C}$ be the field generated by the traces of the elements of $W$.

## Theorem (Benard, Bessis)

The field $K$ is a splitting field for $W$; it is called the field of definition of $W$.

Let $K \subseteq \mathbb{C}$ be the field generated by the traces of the elements of $W$.

## Theorem (Benard, Bessis)

The field $K$ is a splitting field for $W$; it is called the field of definition of $W$.

We can always find $N_{W} \in \mathbb{Z}_{>0}$ such that if we take

$$
u_{s, j}=\zeta_{e_{s}}^{j} v_{s, j}^{N_{w}}
$$

and set $\mathbf{v}:=\left(v_{s, j}\right)_{s, j}$, then the $K(\mathbf{v})$-algebra $K(\mathbf{v}) \mathcal{H}(W)$ is split semisimple.

Let $K \subseteq \mathbb{C}$ be the field generated by the traces of the elements of $W$.

## Theorem (Benard, Bessis)

The field $K$ is a splitting field for $W$; it is called the field of definition of $W$.

We can always find $N_{W} \in \mathbb{Z}_{>0}$ such that if we take

$$
u_{s, j}=\zeta_{e_{s}}^{j} v_{s, j}^{N_{w}}
$$

and set $\mathbf{v}:=\left(v_{s, j}\right)_{s, j}$, then the $K(\mathbf{v})$-algebra $K(\mathbf{v}) \mathcal{H}(W)$ is split semisimple.

## Example

For $W=G_{6}$, we have $K=\mathbb{Q}\left(\zeta_{12}\right)$ and we can take $N_{W}=2$.

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-v_{s, 0}^{2}\right)\left(T_{s}+v_{s, ~}^{2}\right)=0, \\
\left(T_{t}-v_{t, 0}^{2}\right)\left(T_{t}-\zeta_{3} v_{t, 1}^{2}\right)\left(T_{t}-\zeta_{3}^{2} v_{t, 2}^{2}\right)=0
\end{array}
\end{array}\right\rangle
$$

Let $K \subseteq \mathbb{C}$ be the field generated by the traces of the elements of $W$.

## Theorem (Benard, Bessis)

The field $K$ is a splitting field for $W$; it is called the field of definition of $W$.

We can always find $N_{W} \in \mathbb{Z}_{>0}$ such that if we take

$$
u_{s, j}=\zeta_{e_{s}}^{j} v_{s, j}^{N_{w}}
$$

and set $\mathbf{v}:=\left(v_{s, j}\right)_{s, j}$, then the $K(\mathbf{v})$-algebra $K(\mathbf{v}) \mathcal{H}(W)$ is split semisimple.

## Example

For $W=G_{6}$, we have $K=\mathbb{Q}\left(\zeta_{12}\right)$ and we can take $N_{W}=2$.

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-v_{s, 0}^{2}\right)\left(T_{s}+v_{s, ~}^{2}\right)=0, \\
\left(T_{t}-v_{t, 0}^{2}\right)\left(T_{t}-\zeta_{3} v_{t, 1}^{2}\right)\left(T_{t}-\zeta_{3}^{2} v_{t, 2}^{2}\right)=0
\end{array}
\end{array}\right\rangle
$$

Tits's Deformation Theorem $\Rightarrow \operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W)) \leftrightarrow \operatorname{Irr}(W)$.

The Schur elements of $\mathcal{H}(W)$ have been explicitly calculated for

- all finite Coxeter groups:
- for type $A_{n}$ by Steinberg,
- for type $B_{n}$ by Hoefsmit,
- for type $D_{n}$ by Benson and Gay,
- for dihedral groups $I_{2}(\mathrm{~m})$ by Kilmoyer and Solomon,
- for $F_{4}$ by Lusztig,
- for $E_{6}$ and $E_{7}$ by Surowski,
- for $E_{8}$ by Benson,
- for $\mathrm{H}_{3}$ by Lusztig,
- for $\mathrm{H}_{4}$ by Alvis and Lusztig ;
- $G(d, 1, r)$ by Geck-lancu-Malle and Mathas ;
- $G(2 d, 2,2)$ by Malle ;
- for the non-Coxeter exceptional complex reflection groups by Malle.

With the use of Clifford theory, we obtain the Schur elements for $G(d e, e, r)$ from those of $G(d e, 1, r)$ when $r>2$ or $r=2$ and $e$ is odd. The Schur elements for $G(d e, e, 2)$ when $e$ is even derive from those of $G(d e, 2,2)$.


## Theorem (C.)

Let $E \in \operatorname{Irr}(W)$. The Schur element $s_{E}$ is an element of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ of the form

$$
s_{E}=\xi_{E} N_{E} \prod_{i \in I_{E}} \Psi_{E, i}\left(M_{E, i}\right)
$$

where

- $\xi_{E}$ is an element of $\mathbb{Z}_{K}$,
- $N_{E}=\prod_{s, j} v_{s, j}^{b_{s, j}}$ is a monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ with $\sum_{j=0}^{e_{s}-1} b_{s, j}=0$ for all $s$,
- $I_{E}$ is an index set,
- $\left(\Psi_{E, i}\right)_{i \in I_{E}}$ is a family of $K$-cyclotomic polynomials in one variable,
- $\left(M_{E, i}\right)_{i \in I_{E}}$ is a family of monomials in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ such that if $M_{E, i}=\prod_{s, j} v_{s, j}^{a_{s, j}}$, then $\operatorname{gcd}\left(a_{s, j}\right)=1$ and $\sum_{j=0}^{e_{s}-1} a_{s, j}=0$ for all $s$.


## Theorem (C.)

Let $E \in \operatorname{Irr}(W)$. The Schur element $s_{E}$ is an element of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ of the form

$$
s_{E}=\xi_{E} N_{E} \prod_{i \in I_{E}} \Psi_{E, i}\left(M_{E, i}\right)
$$

where

- $\xi_{E}$ is an element of $\mathbb{Z}_{K}$,
- $N_{E}=\prod_{s, j} v_{s, j}^{b_{s, j}}$ is a monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ with $\sum_{j=0}^{e_{s}-1} b_{s, j}=0$ for all $s$,
- $I_{E}$ is an index set,
- $\left(\Psi_{E, i}\right)_{i \in I_{E}}$ is a family of $K$-cyclotomic polynomials in one variable,
- $\left(M_{E, i}\right)_{i \in I_{E}}$ is a family of monomials in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ such that if $M_{E, i}=\prod_{s, j} v_{s, j}^{a_{s, j}}$, then $\operatorname{gcd}\left(a_{s, j}\right)=1$ and $\sum_{j=0}^{e_{s}-1} a_{s, j}=0$ for all $s$.

This is the factorisation of $s_{E}$ into irreducible factors. The monomials $\left(M_{E, i}\right)_{i \in I_{E}}$ are unique up to inversion.

## Example

Take $K=\mathbb{Q}$ and $\Phi_{4}(x)=x^{2}+1$. Then

$$
\Phi_{4}\left(a b^{-1}\right)=a^{2} b^{-2}+1=a^{2} b^{-2}\left(1+a^{-2} b^{2}\right)=a^{2} b^{-2} \Phi_{4}\left(a^{-1} b\right) .
$$

## Example

Take $K=\mathbb{Q}$ and $\Phi_{4}(x)=x^{2}+1$. Then

$$
\Phi_{4}\left(a b^{-1}\right)=a^{2} b^{-2}+1=a^{2} b^{-2}\left(1+a^{-2} b^{2}\right)=a^{2} b^{-2} \Phi_{4}\left(a^{-1} b\right) .
$$

## CHEVIE (C.-Michel)

SchurModels, SchurData, FactorizedSchurElement, FactorizedSchurElements.

## Example

Take $K=\mathbb{Q}$ and $\Phi_{4}(x)=x^{2}+1$. Then

$$
\Phi_{4}\left(a b^{-1}\right)=a^{2} b^{-2}+1=a^{2} b^{-2}\left(1+a^{-2} b^{2}\right)=a^{2} b^{-2} \Phi_{4}\left(a^{-1} b\right) .
$$

## CHEVIE (C.-Michel)

SchurModels, SchurData, FactorizedSchurElement, FactorizedSchurElements.

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-a^{2}\right)\left(T_{s}+b^{2}\right)=0, \\
\left(T_{t}-c^{2}\right)\left(T_{t}-\zeta_{3} d^{2}\right)\left(T_{t}-\zeta_{3}^{2} e^{2}\right)=0
\end{array}
\end{array}\right\rangle
$$

## Example

Take $K=\mathbb{Q}$ and $\Phi_{4}(x)=x^{2}+1$. Then

$$
\Phi_{4}\left(a b^{-1}\right)=a^{2} b^{-2}+1=a^{2} b^{-2}\left(1+a^{-2} b^{2}\right)=a^{2} b^{-2} \Phi_{4}\left(a^{-1} b\right) .
$$

## CHEVIE (C.-Michel)

SchurModels, SchurData, FactorizedSchurElement, FactorizedSchurElements.

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-a^{2}\right)\left(T_{s}+b^{2}\right)=0, \\
\left(T_{t}-c^{2}\right)\left(T_{t}-\zeta_{3} d^{2}\right)\left(T_{t}-\zeta_{3}^{2} e^{2}\right)=0
\end{array}
\end{array}\right\rangle
$$

gap $>W:=$ ComplexReflectionGroup(6); ;
gap $>H:=\operatorname{Hecke}\left(W,\left[\left[a^{2},-b^{2}\right],\left[c^{2}, E(3) * d^{2}, E(3)^{2} * e^{2}\right]\right]\right) ;$;
gap $>$ FactorizedSchurElement $(H,[[1,0]])$;
$P_{4}\left(a b^{-1}\right) P_{3}^{\prime \prime} P_{6}^{\prime}\left(c d^{-1}\right) P_{3}^{\prime} P_{6}^{\prime \prime}\left(c e^{-1}\right) P_{4} P_{12}^{\prime \prime \prime}\left(a b^{-1} c d^{-1}\right) P_{4} P_{12}^{\prime \prime \prime}\left(a b^{-1} c e^{-1}\right)$
$P_{4}\left(a b^{-1} c^{2} d^{-1} e^{-1}\right)$
where $P_{4}=x^{2}+1, P_{3}^{\prime}=\left(x-\zeta_{3}\right), P_{3}^{\prime \prime}=\left(x-\zeta_{3}^{2}\right)$, etc.


For $W=G(d, 1, r) \cong(\mathbb{Z} / d \mathbb{Z}) \backslash \mathfrak{S}_{r} \cong(\mathbb{Z} / d \mathbb{Z})^{r} \rtimes \mathfrak{S}_{r}, \mathcal{H}(W)$ is generated by elements

$$
T_{0}, T_{1}, \ldots, T_{r-1}
$$

satisfying the braid relations of type $B_{r}$ :

and the extra relations:

$$
\left(T_{0}-Q_{0}\right)\left(T_{0}-Q_{1}\right) \cdots\left(T_{0}-Q_{d-1}\right)=0 \quad \text { and } \quad\left(T_{i}-q_{0}\right)\left(T_{i}-q_{1}\right)=0
$$

for all $i=1, \ldots, r-1$.

For $W=G(d, 1, r) \cong(\mathbb{Z} / d \mathbb{Z}) \backslash \mathfrak{S}_{r} \cong(\mathbb{Z} / d \mathbb{Z})^{r} \rtimes \mathfrak{S}_{r}, \mathcal{H}(W)$ is generated by elements

$$
T_{0}, T_{1}, \ldots, T_{r-1}
$$

satisfying the braid relations of type $B_{r}$ :
 and the extra relations:

$$
\left(T_{0}-\mathrm{Q}_{0}\right)\left(T_{0}-\zeta_{d} \mathrm{Q}_{1}\right) \cdots\left(T_{0}-\zeta_{d}^{d-1} \mathrm{Q}_{d-1}\right)=0 \quad \text { and } \quad\left(T_{i}-\mathrm{q}_{0}\right)\left(T_{i}+\mathrm{q}_{1}\right)=0
$$

for all $i=1, \ldots, r-1$.

For $W=G(d, 1, r) \cong(\mathbb{Z} / d \mathbb{Z}) \backslash \mathfrak{S}_{r} \cong(\mathbb{Z} / d \mathbb{Z})^{r} \rtimes \mathfrak{S}_{r}, \mathcal{H}(W)$ is generated by elements

$$
T_{0}, T_{1}, \ldots, T_{r-1}
$$

satisfying the braid relations of type $B_{r}$ :

and the extra relations:

$$
\left(T_{0}-Q_{0}\right)\left(T_{0}-Q_{1}\right) \cdots\left(T_{0}-Q_{d-1}\right)=0 \quad \text { and } \quad\left(T_{i}-q\right)\left(T_{i}+1\right)=0
$$

for all $i=1, \ldots, r-1$.

For $W=G(d, 1, r) \cong(\mathbb{Z} / d \mathbb{Z}) \imath \mathfrak{S}_{r} \cong(\mathbb{Z} / d \mathbb{Z})^{r} \rtimes \mathfrak{S}_{r}, \mathcal{H}(W)$ is generated by elements

$$
T_{0}, T_{1}, \ldots, T_{r-1}
$$

satisfying the braid relations of type $B_{r}$ :

and the extra relations:

$$
\left(T_{0}-Q_{0}\right)\left(T_{0}-Q_{1}\right) \cdots\left(T_{0}-Q_{d-1}\right)=0 \quad \text { and } \quad\left(T_{i}-q\right)\left(T_{i}+1\right)=0
$$

for all $i=1, \ldots, r-1$.

## Theorem (Ariki-Koike)

The algebra $\mathcal{H}(W)$ is split semisimple over the field $\mathcal{K}:=\mathbb{Q}\left(Q_{0}, Q_{1}, \ldots, Q_{d-1}, q\right)$.

For $W=G(d, 1, r) \cong(\mathbb{Z} / d \mathbb{Z}) \imath \mathfrak{S}_{r} \cong(\mathbb{Z} / d \mathbb{Z})^{r} \rtimes \mathfrak{S}_{r}, \mathcal{H}(W)$ is generated by elements

$$
T_{0}, T_{1}, \ldots, T_{r-1}
$$

satisfying the braid relations of type $B_{r}$ :

and the extra relations:

$$
\left(T_{0}-Q_{0}\right)\left(T_{0}-Q_{1}\right) \cdots\left(T_{0}-Q_{d-1}\right)=0 \quad \text { and } \quad\left(T_{i}-q\right)\left(T_{i}+1\right)=0
$$

for all $i=1, \ldots, r-1$.

## Theorem (Ariki-Koike)

The algebra $\mathcal{H}(W)$ is split semisimple over the field $\mathcal{K}:=\mathbb{Q}\left(Q_{0}, Q_{1}, \ldots, Q_{d-1}, q\right)$.

We have

$$
\operatorname{Irr}(\mathcal{K} \mathcal{H}(W)) \leftrightarrow \operatorname{Irr}(W) \leftrightarrow\{d \text {-partitions of } r\} .
$$

The Schur elements of Ariki-Koike algebras have been independently determined by Geck-lancu-Malle and Mathas. They belong to $\mathbb{Z}\left[Q_{0}^{ \pm 1}, Q_{1}^{ \pm 1}, \ldots, Q_{d-1}^{ \pm 1}, q^{ \pm 1}\right]$.

The Schur elements of Ariki-Koike algebras have been independently determined by Geck-lancu-Malle and Mathas. They belong to $\mathbb{Z}\left[Q_{0}^{ \pm 1}, Q_{1}^{ \pm 1}, \ldots, Q_{d-1}^{ \pm 1}, q^{ \pm 1}\right]$.

## Theorem (C.-Jacon)

Let $\boldsymbol{\lambda}=\left(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}\right)$ be a $d$-partition of $r$. Then

$$
s_{\lambda}=(-1)^{r(d-1)} q^{-m_{\lambda}}(q-1)^{-r} \prod_{0 \leq s \leq d-1} \prod_{(i, j) \in\left[\lambda^{(s)}\right]} \prod_{0 \leq t \leq d-1}\left(q^{q_{i, j}^{\lambda^{(s)}, \lambda^{(t)}}} Q_{s} Q_{t}^{-1}-1\right)
$$

where

- $m_{\boldsymbol{\lambda}} \in \mathbb{N}$,
- $\left[\lambda^{(s)}\right]=\left\{(i, j) \mid i \geq 1,1 \leq j \leq \lambda_{i}^{(s)}\right\}$ is the set of nodes of $\lambda^{(s)}$,
- $h_{i, j}^{\lambda^{(s)}, \lambda^{(t)}}:=\lambda_{i}^{(s)}-i+\lambda_{j}^{(t)^{\prime}}-j+1$ is the generalised hook length of the node $(i, j)$ with respect to $\left(\lambda^{(s)}, \lambda^{(t)}\right)$.

The Schur elements of Ariki-Koike algebras have been independently determined by Geck-lancu-Malle and Mathas. They belong to $\mathbb{Z}\left[Q_{0}^{ \pm 1}, Q_{1}^{ \pm 1}, \ldots, Q_{d-1}^{ \pm 1}, q^{ \pm 1}\right]$.

## Theorem (C.-Jacon)

Let $\boldsymbol{\lambda}=\left(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}\right)$ be a $d$-partition of $r$. Then

$$
s_{\boldsymbol{\lambda}}=(-1)^{r(d-1)} q^{-m_{\lambda}}(q-1)^{-r} \prod_{0 \leq s \leq d-1} \prod_{(i, j) \in\left[\lambda^{(s)}\right]} \prod_{0 \leq t \leq d-1}\left(q^{q_{i, j}^{\lambda^{(s)}, \lambda^{(t)}}} Q_{s} Q_{t}^{-1}-1\right)
$$

where

- $m_{\boldsymbol{\lambda}} \in \mathbb{N}$,
- $\left[\lambda^{(s)}\right]=\left\{(i, j) \mid i \geq 1,1 \leq j \leq \lambda_{i}^{(s)}\right\}$ is the set of nodes of $\lambda^{(s)}$,
- $h_{i, j}^{\lambda^{(s)}, \lambda^{(t)}}:=\lambda_{i}^{(s)}-i+\lambda_{j}^{(t)^{\prime}}-j+1$ is the generalised hook length of the node $(i, j)$ with respect to $\left(\lambda^{(s)}, \lambda^{(t)}\right)$.


## CHEVIE (C.-Michel)

SchurModels, SchurData, FactorizedSchurElement, FactorizedSchurElements.

What are the Schur elements of Hecke algebras useful for?

Consider $\mathcal{H}(W)$ defined over $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, and let $q$ be an indeterminate. A cyclotomic specialisation is a $\mathbb{Z}_{K}$-algebra homomorphism

$$
\varphi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[q, q^{-1}\right], \quad v_{s, j} \mapsto q^{m_{s, j}}
$$

where $m_{s, j} \in \mathbb{Z}$ for all $s, j$.

Consider $\mathcal{H}(W)$ defined over $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, and let $q$ be an indeterminate. A cyclotomic specialisation is a $\mathbb{Z}_{k}$-algebra homomorphism

$$
\varphi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[q, q^{-1}\right], \quad v_{s, j} \mapsto q^{m_{s, j}}
$$

where $m_{s, j} \in \mathbb{Z}$ for all $s, j$. The algebra $\mathcal{H}_{\varphi}(W)$ obtained as a specialisation of $\mathcal{H}(W)$ via $\varphi$ is called a cyclotomic Hecke algebra.

Consider $\mathcal{H}(W)$ defined over $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, and let $q$ be an indeterminate. A cyclotomic specialisation is a $\mathbb{Z}_{K}$-algebra homomorphism

$$
\varphi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[q, q^{-1}\right], \quad v_{s, j} \mapsto q^{m_{s, j}}
$$

where $m_{s, j} \in \mathbb{Z}$ for all $s, j$. The algebra $\mathcal{H}_{\varphi}(W)$ obtained as a specialisation of $\mathcal{H}(W)$ via $\varphi$ is called a cyclotomic Hecke algebra. It has the following properties:

- $\mathcal{H}_{\varphi}(W)$ is a free $\mathbb{Z}_{K}\left[q, q^{-1}\right]$-module of rank $|W|$;

Consider $\mathcal{H}(W)$ defined over $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, and let $q$ be an indeterminate. A cyclotomic specialisation is a $\mathbb{Z}_{K}$-algebra homomorphism

$$
\varphi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[q, q^{-1}\right], \quad v_{s, j} \mapsto q^{m_{s, j}}
$$

where $m_{s, j} \in \mathbb{Z}$ for all $s, j$. The algebra $\mathcal{H}_{\varphi}(W)$ obtained as a specialisation of $\mathcal{H}(W)$ via $\varphi$ is called a cyclotomic Hecke algebra. It has the following properties:

- $\mathcal{H}_{\varphi}(W)$ is a free $\mathbb{Z}_{K}\left[q, q^{-1}\right]$-module of rank $|W|$;
- $K(q) \mathcal{H}_{\varphi}(W)$ is split semisimple ;

Consider $\mathcal{H}(W)$ defined over $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, and let $q$ be an indeterminate. A cyclotomic specialisation is a $\mathbb{Z}_{K}$-algebra homomorphism

$$
\varphi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[q, q^{-1}\right], \quad v_{s, j} \mapsto q^{m_{s, j}}
$$

where $m_{s, j} \in \mathbb{Z}$ for all $s, j$. The algebra $\mathcal{H}_{\varphi}(W)$ obtained as a specialisation of $\mathcal{H}(W)$ via $\varphi$ is called a cyclotomic Hecke algebra. It has the following properties:

- $\mathcal{H}_{\varphi}(W)$ is a free $\mathbb{Z}_{K}\left[q, q^{-1}\right]$-module of rank $|W|$;
- $K(q) \mathcal{H}_{\varphi}(W)$ is split semisimple ;
- $\operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W)) \leftrightarrow \operatorname{Irr}\left(K(q) \mathcal{H}_{\varphi}(W)\right) \leftrightarrow \operatorname{Irr}(W) ;$

Consider $\mathcal{H}(W)$ defined over $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, and let $q$ be an indeterminate. A cyclotomic specialisation is a $\mathbb{Z}_{k}$-algebra homomorphism

$$
\varphi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[q, q^{-1}\right], \quad v_{s, j} \mapsto q^{m_{s, j}}
$$

where $m_{s, j} \in \mathbb{Z}$ for all $s, j$. The algebra $\mathcal{H}_{\varphi}(W)$ obtained as a specialisation of $\mathcal{H}(W)$ via $\varphi$ is called a cyclotomic Hecke algebra. It has the following properties:

- $\mathcal{H}_{\varphi}(W)$ is a free $\mathbb{Z}_{K}\left[q, q^{-1}\right]$-module of rank $|W|$;
- $K(q) \mathcal{H}_{\varphi}(W)$ is split semisimple ;
- $\operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W)) \leftrightarrow \operatorname{Irr}\left(K(q) \mathcal{H}_{\varphi}(W)\right) \leftrightarrow \operatorname{Irr}(W) ;$
- $\mathcal{H}_{\varphi}(W)$ is symmetric with Schur elements $\left(\varphi\left(s_{E}\right)\right)_{E \in \operatorname{Irr}(W)} \in \mathbb{Z}_{K}\left[q, q^{-1}\right]$.

Consider $\mathcal{H}(W)$ defined over $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, and let $q$ be an indeterminate. A cyclotomic specialisation is a $\mathbb{Z}_{k}$-algebra homomorphism

$$
\varphi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[q, q^{-1}\right], \quad v_{s, j} \mapsto q^{m_{s, j}}
$$

where $m_{s, j} \in \mathbb{Z}$ for all $s, j$. The algebra $\mathcal{H}_{\varphi}(W)$ obtained as a specialisation of $\mathcal{H}(W)$ via $\varphi$ is called a cyclotomic Hecke algebra. It has the following properties:

- $\mathcal{H}_{\varphi}(W)$ is a free $\mathbb{Z}_{K}\left[q, q^{-1}\right]$-module of rank $|W|$;
- $K(q) \mathcal{H}_{\varphi}(W)$ is split semisimple ;
- $\operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W)) \leftrightarrow \operatorname{Irr}\left(K(q) \mathcal{H}_{\varphi}(W)\right) \leftrightarrow \operatorname{Irr}(W) ;$
- $\mathcal{H}_{\varphi}(W)$ is symmetric with Schur elements $\left(\varphi\left(s_{E}\right)\right)_{E \in \operatorname{Irr}(W)} \in \mathbb{Z}_{K}\left[q, q^{-1}\right]$.

We define $a: \operatorname{Irr}(W) \rightarrow \mathbb{Z}$ and $A: \operatorname{Irr}(W) \rightarrow \mathbb{Z}$ such that

$$
a(E):=-\operatorname{Valuation}_{q}\left(\varphi\left(s_{E}\right)\right) \quad \text { and } \quad A(E):=-\operatorname{Degree}_{q}\left(\varphi\left(s_{E}\right)\right) .
$$

## Example

If $\varphi\left(s_{E}\right)=q^{-1} \Phi_{5}(q)=q^{-1}+1+q+q^{2}+q^{3}$, then $a(E)=1$ and $A(E)=-3$.

## Canonical Basic Sets

Let $\theta: \mathbb{Z}_{K}\left[q, q^{-1}\right] \rightarrow K(\eta), q \mapsto \eta \in \mathbb{C}^{*}$ be a ring homomorphism. Let $\mathcal{H}_{\theta}(W)$ be the algebra obtained as a specialisation of $\mathcal{H}_{\varphi}(W)$ via $\theta$.

## Canonical Basic Sets

Let $\theta: \mathbb{Z}_{K}\left[q, q^{-1}\right] \rightarrow K(\eta), q \mapsto \eta \in \mathbb{C}^{*}$ be a ring homomorphism. Let $\mathcal{H}_{\theta}(W)$ be the algebra obtained as a specialisation of $\mathcal{H}_{\varphi}(W)$ via $\theta$. We have that $K(\eta) \mathcal{H}_{\theta}(W)$ is semisimple if and only if $\theta\left(\varphi\left(s_{E}\right)\right) \neq 0$ for all $E \in \operatorname{Irr}(W)$.

## Canonical Basic Sets

Let $\theta: \mathbb{Z}_{K}\left[q, q^{-1}\right] \rightarrow K(\eta), q \mapsto \eta \in \mathbb{C}^{*}$ be a ring homomorphism. Let $\mathcal{H}_{\theta}(W)$ be the algebra obtained as a specialisation of $\mathcal{H}_{\varphi}(W)$ via $\theta$. We have that $K(\eta) \mathcal{H}_{\theta}(W)$ is semisimple if and only if $\theta\left(\varphi\left(s_{E}\right)\right) \neq 0$ for all $E \in \operatorname{Irr}(W)$.

If $K(\eta) \mathcal{H}_{\theta}(W)$ is not semisimple, we obtain a decomposition matrix $D_{\theta}$. A canonical basic set is a subset of $\operatorname{Irr}(W)$ in bijection with $\operatorname{Irr}\left(K(\eta) \mathcal{H}_{\theta}(W)\right)$ such that $D_{\theta}$ is unitriangular when "the a-function increases down the columns".

## Canonical Basic Sets

Let $\theta: \mathbb{Z}_{K}\left[q, q^{-1}\right] \rightarrow K(\eta), q \mapsto \eta \in \mathbb{C}^{*}$ be a ring homomorphism. Let $\mathcal{H}_{\theta}(W)$ be the algebra obtained as a specialisation of $\mathcal{H}_{\varphi}(W)$ via $\theta$. We have that $K(\eta) \mathcal{H}_{\theta}(W)$ is semisimple if and only if $\theta\left(\varphi\left(s_{E}\right)\right) \neq 0$ for all $E \in \operatorname{Irr}(W)$.

If $K(\eta) \mathcal{H}_{\theta}(W)$ is not semisimple, we obtain a decomposition matrix $D_{\theta}$. A canonical basic set is a subset of $\operatorname{Irr}(W)$ in bijection with $\operatorname{Irr}\left(K(\eta) \mathcal{H}_{\theta}(W)\right)$ such that $D_{\theta}$ is unitriangular when "the a-function increases down the columns".

Canonical basic sets are proved to exist and explicitly described for:

- all finite Coxeter groups:
- existence by Geck-Rouquier, Geck-Jacon, Geck ;
- description for type $A_{n}$ by Geck, for type $B_{n}$ by Jacon, for type $D_{n}$ by Geck and Jacon, for all remaining groups by Geck, Lux and Müller ;
- for $G(d, 1, r)$ by Geck and Jacon ;
- for $G(d e, e, r)$ by Genet-Jacon, C.-Jacon ;
- for some exceptional cases by C.-Miyachi.


## Families of Characters

The Rouquier families are the blocks of $\mathcal{H}_{\varphi}(W)$ over the Rouquier ring :

$$
\mathcal{R}_{K}(q):=\mathbb{Z}_{K}\left[q, q^{-1},\left(q^{n}-1\right)_{n \geq 1}^{-1}\right] .
$$

## Families of Characters

The Rouquier families are the blocks of $\mathcal{H}_{\varphi}(W)$ over the Rouquier ring :

$$
\mathcal{R}_{K}(q):=\mathbb{Z}_{K}\left[q, q^{-1},\left(q^{n}-1\right)_{n \geq 1}^{-1}\right] .
$$

These are the non-empty subsets $B$ of $\operatorname{Irr}(W)$ that are minimal with respect to the property :

$$
\sum_{E \in B} \frac{1}{\varphi\left(s_{E}\right)} \varphi\left(\chi_{E}\right)(h) \in \mathcal{R}_{K}(q) \quad \forall h \in \mathcal{H}_{\varphi}(W) .
$$

## Families of Characters

The Rouquier families are the blocks of $\mathcal{H}_{\varphi}(W)$ over the Rouquier ring :

$$
\mathcal{R}_{K}(q):=\mathbb{Z}_{K}\left[q, q^{-1},\left(q^{n}-1\right)_{n \geq 1}^{-1}\right] .
$$

These are the non-empty subsets $B$ of $\operatorname{Irr}(W)$ that are minimal with respect to the property :

$$
\sum_{E \in B} \frac{1}{\varphi\left(s_{E}\right)} \varphi\left(\chi_{E}\right)(h) \in \mathcal{R}_{K}(q) \quad \forall h \in \mathcal{H}_{\varphi}(W) .
$$

Recall that

$$
s_{E}=\xi_{E} N_{E} \prod_{i \in I_{E}} \Psi_{E, i}\left(M_{E, i}\right)
$$

## Families of Characters

The Rouquier families are the blocks of $\mathcal{H}_{\varphi}(W)$ over the Rouquier ring :

$$
\mathcal{R}_{K}(q):=\mathbb{Z}_{K}\left[q, q^{-1},\left(q^{n}-1\right)_{n \geq 1}^{-1}\right]
$$

These are the non-empty subsets $B$ of $\operatorname{Irr}(W)$ that are minimal with respect to the property:

$$
\sum_{E \in B} \frac{1}{\varphi\left(s_{E}\right)} \varphi\left(\chi_{E}\right)(h) \in \mathcal{R}_{K}(q) \quad \forall h \in \mathcal{H}_{\varphi}(W)
$$

Recall that

$$
s_{E}=\xi_{E} N_{E} \prod_{i \in I_{E}} \Psi_{E, i}\left(M_{E, i}\right) .
$$

We have

$$
\varphi: \xi_{E} \mapsto \xi_{E}, \quad N_{E}=\prod_{s, j} v_{s, j}^{b_{s, j}} \mapsto q^{\sum b_{s, j} m_{s, j}}, \quad \Psi_{E, i}\left(\prod_{s, j} v_{s, j}^{a_{s, j}}\right) \mapsto \Psi_{E, i}\left(q^{\sum a_{s, j} m_{s, j}}\right) .
$$

## Families of Characters

The Rouquier families are the blocks of $\mathcal{H}_{\varphi}(W)$ over the Rouquier ring :

$$
\mathcal{R}_{K}(q):=\mathbb{Z}_{K}\left[q, q^{-1},\left(q^{n}-1\right)_{n \geq 1}^{-1}\right]
$$

These are the non-empty subsets $B$ of $\operatorname{Irr}(W)$ that are minimal with respect to the property :

$$
\sum_{E \in B} \frac{1}{\varphi\left(s_{E}\right)} \varphi\left(\chi_{E}\right)(h) \in \mathcal{R}_{K}(q) \quad \forall h \in \mathcal{H}_{\varphi}(W)
$$

Recall that

$$
s_{E}=\xi_{E} N_{E} \prod_{i \in I_{E}} \Psi_{E, i}\left(M_{E, i}\right) .
$$

We have

$$
\varphi: \xi_{E} \mapsto \xi_{E}, \quad N_{E}=\prod_{s, j} v_{s, j}^{b_{s, j}} \mapsto q^{\sum b_{s, j} m_{s, j}}, \quad \Psi_{E, i}\left(\prod_{s, j} v_{s, j}^{a_{s, j}}\right) \mapsto \Psi_{E, i}\left(q^{\sum a_{s, j} m_{s, j}}\right) .
$$

and
$\Psi_{E, i}\left(q^{\sum a_{s, j} m_{s, j}}\right)$ is a product of $K$-cyclotomic polynomials unless $\sum_{s, j} a_{s, j} m_{s, j}=0$.

## Example

Take $a=q^{4}, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}\left(q^{3}\right)=q^{6}+1=\Phi_{4}(q) \Phi_{12}(q)$.

## Example

Take $a=q^{4}, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}\left(q^{3}\right)=q^{6}+1=\Phi_{4}(q) \Phi_{12}(q)$. Take $a=q, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}(1)=2$.

## Example

Take $a=q^{4}, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}\left(q^{3}\right)=q^{6}+1=\Phi_{4}(q) \Phi_{12}(q)$. Take $a=q, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}(1)=2$.

We call $H: \sum_{s, j} a_{s, j} m_{s, j}=0$ an essential hyperplane for $W$ (in $\mathbb{C}^{\sum_{s} e_{s}}$ ).

## Example

Take $a=q^{4}, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}\left(q^{3}\right)=q^{6}+1=\Phi_{4}(q) \Phi_{12}(q)$.
Take $a=q, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}(1)=2$.
We call $H: \sum_{s, j} a_{s, j} m_{s, j}=0$ an essential hyperplane for $W$ (in $\mathbb{C}^{\sum_{s} e_{s}}$ ).
Now, if $\varphi: v_{s, j} \mapsto q^{m_{s, j}}$ is a cyclotomic specialisation such that
(1) the integers $m_{s, j}$ belong to no essential hyperplane, then the Rouquier families of $\mathcal{H}_{\varphi}(W)$ are called Rouquier families associated with no essential hyperplane.
(2) the integers $m_{s, j}$ belong to a unique essential hyperplane $H$, then the Rouquier families of $\mathcal{H}_{\varphi}(W)$ are called Rouquier families associated with $H$.

The above notions are well-defined because of the following theorem:

## Example

Take $a=q^{4}, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}\left(q^{3}\right)=q^{6}+1=\Phi_{4}(q) \Phi_{12}(q)$.
Take $a=q, b=q$. We have $\Phi_{4}\left(a b^{-1}\right)=\Phi_{4}(1)=2$.
We call $H: \sum_{s, j} a_{s, j} m_{s, j}=0$ an essential hyperplane for $W$ (in $\mathbb{C}^{\sum_{s} e_{s}}$ ).
Now, if $\varphi: v_{s, j} \mapsto q^{m_{s, j}}$ is a cyclotomic specialisation such that
(1) the integers $m_{s, j}$ belong to no essential hyperplane, then the Rouquier families of $\mathcal{H}_{\varphi}(W)$ are called Rouquier families associated with no essential hyperplane.
(2) the integers $m_{s, j}$ belong to a unique essential hyperplane $H$, then the Rouquier families of $\mathcal{H}_{\varphi}(W)$ are called Rouquier families associated with $H$.
The above notions are well-defined because of the following theorem:

## Theorem (C.)

Let $\varphi: v_{s, j} \mapsto q^{m_{s, j}}$ be a cyclotomic specialisation. The Rouquier families of $\mathcal{H}_{\varphi}(W)$ are unions of the Rouquier families associated with the essential hyperplanes that the $m_{s, j}$ belong to and they are minimal with respect to this property.

## Example

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-u_{s, 0}\right)\left(T_{s}-u_{s, 1}\right)=0, \\
\left(T_{t}-u_{t, 0}\right)\left(T_{t}-u_{t, 1}\right)\left(T_{t}-u_{t, 2}\right)=0
\end{array}
\end{array}\right\rangle .
$$

## Example

$$
\mathcal{H}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-v_{s, 0}^{2}\right)\left(T_{s}+v_{s, 1}^{2}\right)=0, \\
\left(T_{t}-v_{t, 0}^{2}\right)\left(T_{t}-\zeta_{3} v_{t, 1}^{2}\right)\left(T_{t}-\zeta_{3}^{2} v_{t, 2}^{2}\right)=0
\end{array}
\end{array}\right\rangle .
$$

## Example

$$
\mathcal{H}_{\varphi}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-q^{2 a_{0}}\right)\left(T_{s}+q^{2 a_{1}}\right)=0, \\
\left(T_{t}-q^{2 c_{0}}\right)\left(T_{t}-\zeta_{3} q^{2 c_{1}}\right)\left(T_{t}-\zeta_{3}^{2} q^{2 c_{2}}\right)=0
\end{array}
\end{array}\right\rangle .
$$

```
no condition
    \(\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(c_{1}-c_{2}=0\)
    \(\left\{\phi_{1,4}, \phi_{1,8}\right\},\left\{\phi_{1,10}, \phi_{1,14}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,3}^{\prime}, \phi_{2,1}, \phi_{2,5}^{\prime}\right\}\)
\(c_{0}-c_{1}=0\)
    \(\left\{\phi_{1,0}, \phi_{1,4}\right\},\left\{\phi_{1,6}, \phi_{1,10}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,3}^{\prime \prime}, \phi_{2,7}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(c_{0}-c_{2}=0\)
    \(\left\{\phi_{1,0}, \phi_{1,8}\right\},\left\{\phi_{1,6}, \phi_{1,14}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,3}^{\prime}, \phi_{2,7}, \phi_{2,1}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\}\)
\(a_{0}-a_{1}-2 c_{0}+c_{1}+c_{2}=0\)
    \(\left\{\phi_{1,6}, \phi_{2,5}^{\prime \prime}, \phi_{2,7}, \phi_{3,4}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(a_{0}-a_{1}+c_{0}-2 c_{1}+c_{2}=0\)
    \(\left\{\phi_{1,10}, \phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}, \phi_{3,4}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(a_{0}-a_{1}+c_{0}+c_{1}-2 c_{2}=0\)
    \(\left\{\phi_{1,14}, \phi_{2,3}^{\prime}, \phi_{2,1}, \phi_{3,4}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\}\)
\(a_{0}-a_{1}-c_{0}-c_{1}+2 c_{2}=0\)
    \(\left\{\phi_{1,8}, \phi_{2,3}^{\prime}, \phi_{2,1}, \phi_{3,2}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\}\)
\(a_{0}-a_{1}-c_{0}+2 c_{1}-c_{2}=0\)
    \(\left\{\phi_{1,4}, \phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}, \phi_{3,2}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(a_{0}-a_{1}+2 c_{0}-c_{1}-c_{2}=0\)
    \(\left\{\phi_{1,0}, \phi_{2,5}^{\prime \prime}, \phi_{2,7}, \phi_{3,2}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(a_{0}-a_{1}-c_{0}+c_{1}=0\)
    \(\left\{\phi_{1,4}, \phi_{1,6}, \phi_{2,3}^{\prime}, \phi_{2,1}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\}\)
\(a_{0}-a_{1}-c_{1}+c_{2}=0\)
    \(\left\{\phi_{1,8}, \phi_{1,10}, \phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(a_{0}-a_{1}+c_{0}-c_{2}=0\)
    \(\left\{\phi_{1,0}, \phi_{1,14}, \phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(a_{0}-a_{1}-c_{0}+c_{2}=0\)
    \(\left\{\phi_{1,8}, \phi_{1,6}, \phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(a_{0}-a_{1}+c_{1}-c_{2}=0\)
    \(\left\{\phi_{1,4}, \phi_{1,14}, \phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\)
\(a_{0}-a_{1}+c_{0}-c_{1}=0\)
    \(\left\{\phi_{1,0}, \phi_{1,10}, \phi_{2,3}^{\prime}, \phi_{2,1}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\}\)
\(a_{0}-a_{1}=0\)
    \(\left\{\phi_{1,0}, \phi_{1,6}\right\},\left\{\phi_{1,4}, \phi_{1,10}\right\},\left\{\phi_{1,8}, \phi_{1,14}\right\},\left\{\phi_{2,5}^{\prime \prime}, \phi_{2,7}\right\},\left\{\phi_{2,3}^{\prime \prime}, \phi_{2,5}^{\prime}\right\},\left\{\phi_{2,3}^{\prime}, \phi_{2,1}\right\}\),
    \(\left\{\phi_{3,2}, \phi_{3,4}\right\}\)
```


## Example

$$
\mathcal{H}_{\varphi}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-q^{2 a_{0}}\right)\left(T_{s}+q^{2 a_{1}}\right)=0, \\
\left(T_{t}-q^{2 c_{0}}\right)\left(T_{t}-\zeta_{3} q^{2 c_{1}}\right)\left(T_{t}-\zeta_{3}^{2} q^{2 c_{2}}\right)=0
\end{array}
\end{array}\right\rangle .
$$

## CHEVIE (C.-Michel)

For all exceptional complex reflection groups: Rouquierblockdata.g.

## Example

$$
\mathcal{H}_{\varphi}\left(G_{6}\right)=\left\langle\begin{array}{l|l}
T_{s}, T_{t} & \begin{array}{l}
T_{s} T_{t} T_{s} T_{t} T_{s} T_{t}=T_{t} T_{s} T_{t} T_{s} T_{t} T_{s}, \\
\left(T_{s}-q^{2 a_{0}}\right)\left(T_{s}+q^{2 a_{1}}\right)=0, \\
\left(T_{t}-q^{2 c_{0}}\right)\left(T_{t}-\zeta_{3} q^{2 c_{1}}\right)\left(T_{t}-\zeta_{3}^{2} q^{2 c_{2}}\right)=0
\end{array}
\end{array}\right\rangle .
$$

## CHEVIE (C.-Michel)

For all exceptional complex reflection groups: Rouquierblockdata.g.

## CHEVIE (C.)

For the Ariki-Koike algebras: RBAK.g.


## Theorem (Lusztig)

The functions $a$ and $A$ are constant on the families of characters.

## Theorem (Lusztig)

The functions $a$ and $A$ are constant on the families of characters.

The function $a+A$ is constant on the Rouquier families of any cyclotomic Hecke algebra associated with a complex reflection group.

## Theorem (Lusztig)

The functions $a$ and $A$ are constant on the families of characters.
The function $a+A$ is constant on the Rouquier families of any cyclotomic Hecke algebra associated with a complex reflection group.

## Theorem (Broué-Kim)

The functions $a$ and $A$ are constant on the Rouquier families of any cyclotomic Ariki-Koike algebra.

## Theorem (Lusztig)

The functions a and $A$ are constant on the families of characters.
The function $a+A$ is constant on the Rouquier families of any cyclotomic Hecke algebra associated with a complex reflection group.

## Theorem (Broué-Kim)

The functions $a$ and $A$ are constant on the Rouquier families of any cyclotomic Ariki-Koike algebra.

## Theorem (C.)

The functions a and $A$ are constant on the Rouquier families of any cyclotomic Hecke algebra associated with an exceptional complex reflection group.

A cyclotomic polynomial in one variable has valuation 0 .

A cyclotomic polynomial in one variable has valuation 0 .
We have

$$
\varphi: \psi_{E, i}\left(\prod_{s, j} v_{s, j}^{a_{s, j}}\right) \mapsto \psi_{E, i}\left(q^{\sum a_{s, j} m_{s, j}}\right) .
$$

A cyclotomic polynomial in one variable has valuation 0 .
We have

$$
\varphi: \psi_{E, i}\left(\prod_{s, j} v_{s, j}^{a_{s, j}}\right) \mapsto \psi_{E, i}\left(q^{\sum a_{s, j} m_{s, j}}\right) .
$$

We distinguish two cases:

- If $\sum a_{s, j} m_{s, j} \geq 0$, we add 0 to $a(E)$.
- If $\sum a_{s, j} m_{s, j}<0$, we add $-\operatorname{degree}\left(\Psi_{E, i}\right) \cdot\left(\sum a_{s, j} m_{s, j}\right)$ to $a(E)$.

A cyclotomic polynomial in one variable has valuation 0 .
We have

$$
\varphi: \psi_{E, i}\left(\prod_{s, j} v_{s, j}^{a_{s, j}}\right) \mapsto \psi_{E, i}\left(q^{\sum a_{s, j} m_{s, j}}\right) .
$$

We distinguish two cases:

- If $\sum a_{s, j} m_{s, j} \geq 0$, we add 0 to $a(E)$.
- If $\sum a_{s, j} m_{s, j}<0$, we add $-\operatorname{degree}\left(\Psi_{E, i}\right) \cdot\left(\sum a_{s, j} m_{s, j}\right)$ to $a(E)$.


## CHEVIE (C.)

For all excpetional complex reflection groups: DegVal.g.
where $\xi_{\chi} \in \mathbb{Z}_{K}, b_{\chi} \in \mathbb{Z}, C_{\chi}$ is a set of $K$-cyclotomic polynomials and $n_{\chi, \psi} \in \mathbb{N}$. If $\phi: v \mapsto y^{n}(n \in \mathbb{Z})$ is a cyclotomic specialization, then

- $a_{\chi_{\phi}}=n \cdot \operatorname{val}_{v}\left(s_{\chi}(v)\right)$.
- $A_{\chi_{\phi}}=n \cdot \operatorname{deg}_{v}\left(s_{\chi}(v)\right)$.

Therefore, in order to verify Theorem 6.1 for $W$, it suffices to check whether the degree and the valuation of the generic Schur elements remain constant on the Rouquier blocks associated with no essential hyperplane. Note that the generic Schur elements coincide with the Schur elements of the "spetsial" cyclotomic Hecke algebra and the Rouquier blocks associated with no essential hyperplane coincide with its Rouquier blocks.

We can easily create an algorithm which returns "true" if the degree and the valuation of the
Theorem 6.1 holds for $W$.

## Acknowledgments

I would like to thank Jean Michel for making my algorithm look better and run faster. I would also like to thank the Ecole Polytechnique Fédérale de Lausanne for its financial support.

## Appendix A

Definition A.1. Let $A$ be a subalgebra of $A$ free and of finite rank as an $\mathcal{O}$-module. We say that $A$ is a symmetric subalgebra of $A$, if it satisfies the following two conditions:

1. $\bar{A}$ is free (of finite rank) as an $\mathcal{O}$-module and the restriction $\operatorname{Res} \bar{A}_{\bar{A}}^{A}(t)$ of the form $t$ to $\bar{A}$ is a

Thank you for listening (everyone for the past hour, Jean for the past ten years)!


