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Let

R be a commutative integral domain ;

A be an R-algebra, free and finitely generated as an R-module ;

K be a splitting field for A.

We write KA := K ⌦
R

A.

A symmetrising trace on the algebra A is a linear map ⌧ : A ! R such that

1 ⌧(ab) = ⌧(ba) for all a, b 2 A, and

2 the map b⌧ : A ! Hom
R

(A,R), a 7! (x 7! ⌧(ax)) is an isomorphism of
A-bimodules.

Example

Let G be a finite group. The linear map ⌧ : Z[G ] ! Z,
P

g2G

r
g

g 7! r1
is the canonical symmetrising trace on Z[G ].
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Let E be a simple KA-module and let �
E

be the corresponding character. The
map ⌧ can be extended to KA by extension of scalars. We have:

b⌧�1(�
E

) 2 Z (KA).

The above element acts on E as a scalar; we call this scalar the Schur element of
E with respect to ⌧ and denote it by s

E

.

We have s
E

2 R
K

, where R
K

denotes the integral closure of R in K .

Example

Let G be a finite group and let ⌧ be the canonical symmetrising form on
A := Z[G ]. Let K be an algebraically closed field of characteristic 0, and let
E 2 Irr(KA). We have s

E

= |G |/�
E

(1) 2 Z

K

\Q = Z.
We have thus shown that �

E

(1) divides |G |.



Let E be a simple KA-module and let �
E

be the corresponding character. The
map ⌧ can be extended to KA by extension of scalars. We have:

b⌧�1(�
E

) 2 Z (KA).

The above element acts on E as a scalar; we call this scalar the Schur element of
E with respect to ⌧ and denote it by s

E

.

We have s
E

2 R
K

, where R
K

denotes the integral closure of R in K .

Example

Let G be a finite group and let ⌧ be the canonical symmetrising form on
A := Z[G ]. Let K be an algebraically closed field of characteristic 0, and let
E 2 Irr(KA). We have s

E

= |G |/�
E

(1) 2 Z

K

\Q = Z.
We have thus shown that �

E

(1) divides |G |.



Let E be a simple KA-module and let �
E

be the corresponding character. The
map ⌧ can be extended to KA by extension of scalars. We have:

b⌧�1(�
E

) 2 Z (KA).

The above element acts on E as a scalar; we call this scalar the Schur element of
E with respect to ⌧ and denote it by s

E

.

We have s
E

2 R
K

, where R
K

denotes the integral closure of R in K .

Example

Let G be a finite group and let ⌧ be the canonical symmetrising form on
A := Z[G ]. Let K be an algebraically closed field of characteristic 0, and let
E 2 Irr(KA). We have s

E

= |G |/�
E

(1) 2 Z

K

\Q = Z.
We have thus shown that �

E

(1) divides |G |.



Let E be a simple KA-module and let �E be the corresponding character. The
map ⌧ can be extended to KA by extension of scalars. We have:

b⌧�1(�E ) 2 Z (KA).

The above element acts on E as a scalar; we call this scalar the Schur element of
E with respect to ⌧ and denote it by sE .

We have sE 2 RK , where RK denotes the integral closure of R in K .

Example

Let G be a finite group and let ⌧ be the canonical symmetrising trace on
A := Z[G ]. Let K be an algebraically closed field of characteristic 0, and let
E 2 Irr(KA). We have sE = |G |/�E (1) 2 ZK \Q = Z.
We have thus shown that �E (1) divides |G |.





1 If E 2 Irr(KA), then E is projective if and only if s
E

6= 0.

2 The algebra KA is semisimple if and only if s
E

6= 0 for all E 2 Irr(KA).
If this is the case, then:

I We have

⌧ =
X

E2Irr(KA)

1

s
E

�
E

.

I The blocks of A are the non-empty subsets B of Irr(KA) that are
minimal with respect to the property:

X

E2B

1

s
E

�
E

(a) 2 R 8a 2 A.

3 Let ✓ : R ! L := Frac(✓(R)) be a ring homomorphism. Assume that
R
K

= R and that the algebra LA is split. Then:

I LA is semisimple if and only if ✓(s
E

) 6= 0 for all E 2 Irr(KA).

I If ✓(s
E

) 6= 0 for some E 2 Irr(KA), then E forms a block of defect 0.
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Let V be a finite dimensional complex vector space. A complex reflection group
W is a finite subgroup of GL(V ) generated by pseudo-reflections, i.e., elements
whose vector space of fixed points is a hyperplane.

Theorem (Shephard-Todd)

Let W ⇢ GL(V ) be an irreducible complex reflection group (i.e., W acts
irreducibly on V ). Then one of the following assertions is true:

(W ,V ) ⇠= (S
r

,Cr�1).

(W ,V ) ⇠= (G (de, e, r),Cr ), where G (de, e, r) is the group of all r ⇥ r
monomial matrices whose non-zero entries are de-th roots of unity, while the
product of all non-zero entries is an d-th root of unity.

(W ,V ) is isomorphic to one of the 34 exceptional groups G
n

, n = 4, . . . , 37.
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Every complex reflection group W has a presentation “à la Coxeter” given by
generators and relations. The generic Hecke algebra H(W ) of W can be viewed
as a deformation of the group algebra of W .

Example

The generic Hecke algebra of

G6 =
⌦
s, t | ststst = tststs, s2 = t3 = 1

↵

is

H(G6) =

*
T
s

, T
t

������

T
s

T
t

T
s

T
t

T
s

T
t

= T
t

T
s

T
t

T
s

T
t

T
s

,
(T

s

� u
s,0)(Ts

� u
s,1) = 0,

(T
t

� u
t,0)(Tt

� u
t,1)(Tt

� u
t,2) = 0

+
.

Set ⇣
d

:= exp(2⇡i/d). The algebra H(G6) specialises to Z[G6] when

u
s,0 7! 1, u

s,0 7! �1, u
t,0 7! 1, u

t,1 7! ⇣3, ut,2 7! ⇣23 .

More generally, H(W ) is a Z[u,u�1]-algebra, where u := (u
s,j)

s, j=1,...,e
s

:=order(s).

The algebra H(W ) specialises to Z[W ] when u
s,j 7! ⇣ j

e

s

for all s, j .
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1 Representation theory of finite reductive groups.

2 “Spetses” programme.

3 Representation theory of Cherednik algebras.

4 Knot theory.

5 Quantum groups.
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Conjectures (Broué-Malle-Michel-Rouquier)

1 Freeness: The algebra H(W ) is a free Z[u,u�1]-module of rank |W |.
2 Trace: There exists a canonical symmetrising trace ⌧ on H(W ) that

satisfies certain canonicality conditions; the map ⌧ specialises to the
canonical symmetrising trace on the group algebra of W when us,j 7! ⇣ jes .

The Freeness Conjecture is verified for:

all finite Coxeter groups ;

G (de, e, r) (Ariki-Koike, Broué-Malle-Michel) ;

all exceptional groups except for G17, . . . ,G21 (Chavli, Marin, Marin-Pfei↵er).

The Trace Conjecture is verified for:

all finite Coxeter groups ;

G (de, e, r) (BMM, Bremke-Malle, Malle-Mathas, Geck-Iancu-Malle) ;

the exceptional groups G4, G12, G22 and G24 (Malle-Michel).
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Let K ✓ C be the field generated by the traces of the elements of W .

Theorem (Benard, Bessis)

The field K is a splitting field for W ; it is called the field of definition of W .

We can always find N
W

2 Z>0 such that if we take

u
s,j = ⇣ j

e

s

vN

W

s,j

and set v := (v
s,j)s,j , then the K (v)-algebra K (v)H(W ) is split semisimple.

Example

For W = G6, we have K = Q(⇣12) and we can take N
W

= 2.

H(G6) =

*
T
s
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t
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s

� v2
s,0)(Ts

+ v2
s,1) = 0,

(T
t

� v2
t,0)(Tt

� ⇣3v2
t,1)(Tt

� ⇣23v
2
t,2) = 0

+

Tits’s Deformation Theorem ) Irr(K (v)H(W )) $ Irr(W ).
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Take K = Q and �4(x) = x2 + 1. Then

�4(ab
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For W = G (d , 1, r) ⇠= (Z/dZ) oS
r

⇠= (Z/dZ)r oS
r

, H(W ) is generated by
elements

T0,T1, . . . ,Tr�1

satisfying the braid relations of type B
r

:

and the extra relations:

(T0 � Q0)(T0 � Q1) · · · (T0 � Q
d�1) = 0 and (T

i

� q0)(Ti

� q1) = 0

for all i = 1, . . . , r � 1.

Theorem (Ariki-Koike)

The algebra H(W ) is split semisimple over the field K := Q(Q0,Q1, . . . ,Qd�1, q).

We have
Irr(KH(W )) $ Irr(W ) $ {d-partitions of r}.
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The Schur elements of Ariki–Koike algebras have been independently determined
by Geck-Iancu-Malle and Mathas. They belong to Z[Q±1

0 ,Q±1
1 , . . . ,Q±1

d�1, q
±1].

Theorem (C.-Jacon)

Let � = (�(0),�(1), . . . ,�(d�1)) be a d-partition of r . Then

s� = (�1)r(d�1)q�m�(q � 1)�r
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m� 2 N,

[�(s)] = {(i , j) | i � 1, 1  j  �(s)
i

} is the set of nodes of �(s),

h�
(s),�(t)

i, j := �(s)
i

� i + �(t)0

j

� j + 1 is the generalised hook length of the node

(i , j) with respect to (�(s),�(t)).

CHEVIE (C.-Michel)

SchurModels, SchurData, FactorizedSchurElement, FactorizedSchurElements.
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Consider H(W ) defined over Z
K

[v, v�1], and let q be an indeterminate.
A cyclotomic specialisation is a Z

K

-algebra homomorphism

' : Z
K

[v, v�1] ! Z

K

[q, q�1], v
s,j 7! qms,j ,

where m
s,j 2 Z for all s, j .

The algebra H'(W ) obtained as a specialisation of
H(W ) via ' is called a cyclotomic Hecke algebra. It has the following properties:

H'(W ) is a free Z

K

[q, q�1]-module of rank |W | ;
K (q)H'(W ) is split semisimple ;

Irr(K (v)H(W )) $ Irr(K (q)H'(W )) $ Irr(W ) ;

H'(W ) is symmetric with Schur elements ('(s
E

))
E2Irr(W ) 2 Z

K

[q, q�1] .

We define a : Irr(W ) ! Z and A : Irr(W ) ! Z such that

a(E ) := �Valuation
q

('(s
E

)) and A(E ) := �Degree
q

('(s
E

)).

Example

If '(s
E

) = q�1�5(q) = q�1 + 1 + q + q2 + q3, then a(E ) = 1 and A(E ) = �3.
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s,j 2 Z for all s, j . The algebra H'(W ) obtained as a specialisation of

H(W ) via ' is called a cyclotomic Hecke algebra. It has the following properties:

H'(W ) is a free Z

K

[q, q�1]-module of rank |W | ;
K (q)H'(W ) is split semisimple ;

Irr(K (v)H(W )) $ Irr(K (q)H'(W )) $ Irr(W ) ;

H'(W ) is symmetric with Schur elements ('(s
E
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E2Irr(W ) 2 Z

K

[q, q�1] .

We define a : Irr(W ) ! Z and A : Irr(W ) ! Z such that

a(E ) := �Valuation
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)) and A(E ) := �Degree
q
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Canonical Basic Sets

Let ✓ : Z
K

[q, q�1] ! K (⌘), q 7! ⌘ 2 C

⇤ be a ring homomorphism. Let H✓(W )
be the algebra obtained as a specialisation of H'(W ) via ✓.

We have that
K (⌘)H✓(W ) is semisimple if and only if ✓('(s

E

)) 6= 0 for all E 2 Irr(W ).

If K (⌘)H✓(W ) is not semisimple, we obtain a decomposition matrix D✓.
A canonical basic set is a subset of Irr(W ) in bijection with Irr(K (⌘)H✓(W ))
such that D✓ is unitriangular when “the a-function increases down the columns”.

Canonical basic sets are proved to exist and explicitly described for:

all finite Coxeter groups:
I for type A

n

by Geck,
I for type B

n

by Jacon,
I for type D

n

by Geck and Jacon,
I for all remaining groups by Geck, Lux and Müller ;

for G (de, 1, r) by Geck and Jacon ;

for G (de, e, r) by Genet-Jacon, C.-Jacon ;

for some exceptional cases by C.-Miyachi.
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Families of Characters

The Rouquier families are the blocks of H'(W ) over the Rouquier ring :

R
K

(q) := Z

K

[q, q�1, (qn � 1)�1
n�1].

These are the non-empty subsets B of Irr(W ) that are minimal with respect to
the property :
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s,jms,j ) is a product of K -cyclotomic polynomials unless
X
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a
s,jms,j = 0.
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Example

Take a = q4, b = q. We have �4(ab
�1) = �4(q

3) = q6 + 1 = �4(q)�12(q).

Take a = q, b = q. We have �4(ab
�1) = �4(1) = 2.

We call H :
P

s,j as,jms,j = 0 an essential hyperplane for W (in C

P
s

e

s ).

Now, if ' : v
s,j 7! qms,j is a cyclotomic specialisation such that

1 the integers m
s,j belong to no essential hyperplane, then the Rouquier

families of H'(W ) are called Rouquier families associated with no essential
hyperplane.

2 the integers m
s,j belong to a unique essential hyperplane H, then the

Rouquier families of H'(W ) are called Rouquier families associated with H.

The above notions are well-defined because of the following theorem:

Theorem (C.)

Let ' : v
s,j 7! qms,j be a cyclotomic specialisation. The Rouquier families of

H'(W ) are unions of the Rouquier families associated with the essential
hyperplanes that the m

s,j belong to and they are minimal with respect to this
property.
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Theorem (Lusztig)

The functions a and A are constant on the families of characters.

The function a+ A is constant on the Rouquier families of any cyclotomic Hecke
algebra associated with a complex reflection group.

Theorem (Broué-Kim)

The functions a and A are constant on the Rouquier families of any cyclotomic
Ariki-Koike algebra.

Theorem (C.)

The functions a and A are constant on the Rouquier families of any cyclotomic
Hecke algebra associated with an exceptional complex reflection group.
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The functions a and A are constant on the Rouquier families of any cyclotomic
Ariki-Koike algebra.

Theorem (C.)

The functions a and A are constant on the Rouquier families of any cyclotomic
Hecke algebra associated with an exceptional complex reflection group.
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Thank you for listening (everyone for the past hour, Jean for the past ten years)!


