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Let
@ R be a commutative integral domain ;
@ A be an R-algebra, free and finitely generated as an R-module ;
@ K be a splitting field for A.

We write KA := K Qr A.

A symmetrising trace on the algebra A is a linear map 7 : A — R such that
@ 7(ab) = 7(ba) for all a, b € A, and

@ the map 7: A — Homg(A, R), a— (x — 7(ax)) is an isomorphism of
A-bimodules.

Let G be a finite group. The linear map 7 : Z[G| — Z, >
is the canonical symmetrising trace on Z|G].
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Let £ be a simple KA-module and let xg be the corresponding character. The
map 7 can be extended to KA by extension of scalars. We have:

7 (xe) € Z(KA).

The above element acts on E as a scalar; we call this scalar the Schur element of
E with respect to 7 and denote it by sg.

We have sg € Rk, where Rk denotes the integral closure of R in K.

Let G be a finite group and let 7 be the canonical symmetrising trace on

A :=7Z[G]. Let K be an algebraically closed field of characteristic 0, and let
E € Irr(KA). We have sg = |G|/xe(1) € Zxk NQ = Z.

We have thus shown that xg(1) divides |G|.
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© The algebra KA is semisimple if and only if sg £ 0 for all E € Irr(KA).
If this is the case, then:

» We have

T = Z iXE.
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minimal with respect to the property:
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© Let 6: R — L :=Frac(d(R)) be a ring homomorphism. Assume that
Rk = R and that the algebra LA is split. Then:

» LA is semisimple if and only if 8(sg) # 0 for all E € Irr(KA).
> If O(sg) # 0 for some E € Irr(KA), then E forms a block of defect 0.






Let V' be a finite dimensional complex vector space. A complex reflection group
W is a finite subgroup of GL(V) generated by pseudo-reflections, i.e., elements
whose vector space of fixed points is a hyperplane.



Let V' be a finite dimensional complex vector space. A complex reflection group
W is a finite subgroup of GL(V) generated by pseudo-reflections, i.e., elements
whose vector space of fixed points is a hyperplane.

Theorem (Shephard-Todd)

Let W C GL(V) be an irreducible complex reflection group (i.e., W acts
irreducibly on V). Then one of the following assertions is true:

o (W, V) (&,,Cr1).

@ (W,V)=(G(de, e, r),C"), where G(de,e,r) is the group of all r x r
monomial matrices whose non-zero entries are de-th roots of unity, while the
product of all non-zero entries is a d-th root of unity.

@ (W, V) is isomorphic to one of the 34 exceptional groups G,, n=24,...,37.
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Every complex reflection group W has a presentation “a la Coxeter” given by
generators and relations. The generic Hecke algebra H(W) of W can be viewed
as a deformation of the group algebra of W.

The generic Hecke algebra of

Ge = ( s,t | ststst = tststs, s*° =t>=1)

Ts Tth Tt Ts Tt — 7--t 7--s 7--t TsTtT57
H(Gs) = < Toy To | (To — tso)(Ts — ts1) =0, >
(Tt — Ut,O)(Tt — Ut,l)(Tt — Ut,z) =0

Set (4 := exp(2mi/d). The algebra H(Gg) specialises to Z[Gg] when

>
uso— l,uso— =1, upo— 1, ur 1 (3, Ur 2 — (5.

More generally, H(W) is a Z[u,u']-algebra, where u := (us;)s j=o,... e.—1-

The algebra H(W) specialises to Z[W] when usj — ¢_for all s, j.
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© Representation theory of finite reductive groups.

@ ‘Spetses’ programme.

© Representation theory of Cherednik algebras.

© Knot theory.

© Quantum groups.
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The Freeness Conjecture is verified for:
@ all finite Coxeter groups ;
@ G(de,e,r) (Ariki-Koike, Broué-Malle-Michel) ;

@ all exceptional groups except for Gi7, ..., Go1 (Chavli, Marin, Marin-Pfeiffer).

The Trace Conjecture is verified for:

@ all finite Coxeter groups ;
@ G(de,e,r) (BMM, Bremke-Malle, Malle-Mathas, Geck-lancu-Malle) ;

@ the exceptional groups Gg, Giz, G and Gyy (Malle-Michel).
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Theorem (Benard, Bessis)
The field K is a splitting field for W it is called the field of definition of W.

We can always find Ny, € Z~ such that if we take

. o, Nw
uS?J T esvs,j

and set v := (vs)s.j, then the K(v)-algebra K(v)H (W) is split semisimple.

For W = Gg, we have K = Q((12) and we can take Ny, = 2.

Ts T TsT: T T = TtT TeTsTeTs, >
0

H(G6)=< To, Te | (Ts = vio)(Ts +v2q) =0,
(Tt_VE,o)(Tt C3Vt1)(Tt 3Vt2)

Tits's Deformation Theorem = Irr(K(v)H(W)) <> Irr(W).



The Schur elements of H(W) have been explicitly calculated for

@ all finite Coxeter groups :

for type A, by Steinberg,

for type B, by Hoefsmit,

for type D, by Benson and Gay,

for dihedral groups L (m) by Kilmoyer and Solomon,
for F4 by Lusztig,

for E¢ and E7 by Surowski,

for Eg by Benson,

for H3 by Lusztig,

for Hy by Alvis and Lusztig ;

@ G(d,1,r) by Geck-lancu-Malle and Mathas ;
@ G(2d,2,2) by Malle ;

vV v v vV vV vV vV VY Y

@ for the non-Coxeter exceptional complex reflection groups by Malle.

With the use of Clifford theory, we obtain the Schur elements for G(de, e, r) from
those of G(de,1,r) when r > 2 or r =2 and e is odd. The Schur elements for
G(de, e,2) when e is even derive from those of G(de, 2, 2).
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Theorem (C.)

Let E € Irr(W). The Schur element sg is an element of Z[v,v~!] of the form
se = EeNE H Ve (Mg )
i€le
where

@ &£ is an element of Zg,

_ bs,j - —1 ‘95_1 _
© Ng =]l ;v isamonomial in Zg[v,v™"] with > > ," bs; =0 for all s,

@ /g is an index set,

@ (Ve i)ici is a family of K-cyclotomic polynomials in one variable,

@ (Mg i)ici is a family of monomials in Zk[v,v™!] such that if
Me;=1],;v.7, then ged(as ;) =1 and Zesgl asj = 0 for all s.




Theorem (C.)

Let E € Irr(W). The Schur element sg is an element of Z[v,v~!] of the form
se = EeNE H Ve (Mg )
i€le
where

@ &£ is an element of Zg,

- bs,J q 1 es_]' -
© Ng =]l ;v isamonomial in Zg[v,v™"] with > > ," bs; =0 for all s,

@ /g is an index set,

@ (Ve i)ici is a family of K-cyclotomic polynomials in one variable,

@ (Mg i)ici is a family of monomials in Zk[v,v™!] such that if
Mg ;= [I,; v, then ged(as;) =1 and Zesgl as; = 0 for all s.

This is the factorisation of sg into irreducible factors. The monomials (Mg ;)ici,
are unique up to inversion.



Take K = Q and ®4(x) = x* + 1. Then

da(ab™t) = a°b72 + 1 = a’b (1 + a2b%) = a®b2d4(a~1h).




Take K = Q and ®4(x) = x* + 1. Then

da(ab™t) = a°b72 + 1 = a’b (1 + a2b%) = a®b2d4(a~1h).

CHEVIE (C.-Michel)
SchurModels, SchurData, FactorizedSchurElement, FactorizedSchurElements.




Take K = Q and ®4(x) = x* + 1. Then

da(ab™t) = a°b72 + 1 = a’b (1 + a2b%) = a®b2d4(a~1h).

CHEVIE (C.-Michel)
SchurModels, SchurData, FactorizedSchurElement, FactorizedSchurElements.

7—sTthTthTt — TthTthTtT57
H(Ge) < Ts, Te | (Ts—a%)(Ts+b%) =0, >
(T: — A)(T: — G3d?)(Tr — 2€?) = 0




Take K = Q and ®4(x) = x* + 1. Then
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TsT:7Ts TtT Ty =TT T TsT:7Ts,
H(G6): < 7_57 Tt (T )(T _|_b2)_07 >
(Tt - Cz)(Tt — <3d2)(Tt — Cgez) — 0
gap > W := ComplexReflectionGroup(6); ;
gap > H := Hecke(W, [[a?, —b%], [¢, E(3) + d2, E(3)? + €%]]);;
gap > FactorizedSchurElement(H, [[1,0]]);

Py(ab™ )Py Pl(cd )PPl (ce )PPy (ab~tcd 1) Py Py (ab~tce™ 1)
Pi(ab 1c?dte 1)

where P, = x* + 1, P, = (x — (3), P§ = (x — (3), etc.







For W = G(d,1,r) = (Z/dZ) 16, = (Z/dZ)" x &,, H(W) is generated by
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For W = G(d,1,r) = (Z/dZ) 16, = (Z/dZ)" x &,, H(W) is generated by
elements
TO) Tl) s e ey Tr—l

satisfying the braid relations of type B,:

O—0—0—0+0—0

and the extra relations:
(To— Qo)(To— Q1) - (To— Q4g—1) =0 and (T;—q)(T;+1)=0

foralli=1,...,r—1.

Theorem (Ariki-Koike)

The algebra H(W) is split semisimple over the field I := Q(Qq, Q1, ..., Qu_1,q).

We have
Irr(KH(W)) <> Irr(W) < {d-partitions of r}.
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Consider H(W) defined over Zk[v,v™!], and let g be an indeterminate.
A cyclotomic specialisation is a Zk-algebra homomorphism

Mms,j

® - ZK[Vav_l] — ZK[qa q_1]7 Vs,j = q ’

where m ; € Z for all s, j. The algebra H, (W) obtained as a specialisation of
H(W) via ¢ is called a cyclotomic Hecke algebra. It has the following properties:

@ H, (W) is a free Zk[q, g~ ']-module of rank |W]| ;

@ K(q)H,(W) is split semisimple ;

o Irr(K(v)H(W)) < Irr(K(q)H,o(W)) < Irx(W) ;

® H,(W) is symmetric with Schur elements (¢(sg))ectr(w) € Zklg, g7 1] .

We define a: Irr(W) — Z and A : Irr(W) — Z such that
a(E) := —Valuationg(¢(sg)) and A(E) := —Degree,(¢(sg)).

If p(se) =g '®s(q) =g ' +1+qg+g°+ >, then a(E) =1 and A(E) = 3.
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be the algebra obtained as a specialisation of H, (W) via 8. We have that
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Canonical Basic Sets

Let 0 : Zk[q,q7 ] — K(n), g — n € C* be a ring homomorphism. Let Hq(W)
be the algebra obtained as a specialisation of H, (W) via 8. We have that
K(n)He(W) is semisimple if and only if (p(sg)) # 0 for all E € Irr(W).

If K(n)He(W) is not semisimple, we obtain a decomposition matrix Djy.
A canonical basic set is a subset of Irr(W) in bijection with Irr(K(n)He(W))
such that Dy is unitriangular when “the a-function increases down the columns”.

Canonical basic sets are proved to exist and explicitly described for:

@ all finite Coxeter groups:

» existence by Geck-Rouquier, Geck-Jacon, Geck ;

» description for type A, by Geck, for type B, by Jacon, for type D,
by Geck and Jacon, for all remaining groups by Geck, Lux and Muller ;

@ for G(d,1,r) by Geck and Jacon ;
@ for G(de,e,r) by Genet-Jacon, C.-Jacon ;

@ for some exceptional cases by C.-Miyachi.
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Families of Characters

The Rouquier families are the blocks of H, (W) over the Rouquier ring :

Rk(q) :=Zklq,q7 ', (q" — 1);211]°

These are the non-empty subsets B of Irr(W) that are minimal with respect to
the property :

S o(xe)(h) € Ri(q) the Ha(W).

fes ¥(5e)

Recall that

se = EeNE H Ve (Mg ).

i€le

We have

bs, s, jMs as,jMs,j

SO:‘fEHgEa NE:HVS’J' |%qz:b’ " wEI(H |—>\UE, 2 )
S.J

and

\I!E,,-(qE ./Ms.) is a product of K-cyclotomic polynomials unless Z as jms; = 0.
S.J
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Take a= g* b= qg. We have ®4(ab™1) = ©4(q>) = ¢° + 1 = ®4(q)P12(q).
Take a= g, b= g. We have ®4(ab™1) = d4(1) = 2.

We call H: ) - asjms; = 0 an essential hyperplane for W (in C2s ).
Now, if ¢ : vs; — g™+ Is a cyclotomic specialisation such that

© the integers ms; belong to no essential hyperplane, then the Rouquier
families of H (W) are called Rouquier families associated with no essential
hyperplane.

@ the integers ms ; belong to a unique essential hyperplane H, then the
Rouquier families of H,, (W) are called Rouquier families associated with H.

The above notions are well-defined because of the following theorem:

Theorem (C.)

Let ¢ : vsj — g™/ be a cyclotomic specialisation. The Rouquier families of
H, (W) are unions of the Rouquier families associated with the essential

hyperplanes that the mg ; belong to and they are minimal with respect to this
property.




TsTthTthTt — TthTthTtT57
H(Ge) = < Ts, T: (Ts — us,0)(Ts — us1) =0, >

(Tt - Ut,O)(Tt — ut,l)(Tt — Ut,z) =0




TsTiTsT  TsT: = TtT T TT: Ty,
H(G6) :< TS, Tt (T — VsO)(T —|—V 1) _O >

(Te = Vt,O)(Tf 3Vt,1)(Tt 3%‘/152,2) =0




Ts 7_t TsTthTt — Tth Tth Tt T57
H,(Go) :< Ts, Te | (Ts —q**)(Ts +q°*) =0, >

(T: — @) (Tt — G3g°)(T: — (3¢°2) =0




no condition

{¢g,57 ¢2,7}7 {d)IQI,?)v ¢l2,5}7 {¢§,37 ¢2,1}

C1—62:0

{01,4, 618}, {D1,10, 1,14}, {D55, D27}, {D55, Do 55 P21, P55}

60—61:0

{¢1,07¢1,4}7 {¢1,67¢1,10}7 {QS/2/757 /2/737¢2,77¢/275}’ {¢I273a¢2,1}

60—62:0

{¢1,07¢1,8}7 {¢1767¢1,l4}7 {¢/2/757¢/2737¢2,77¢2,1}a {¢/2/,3a /275}

ao—a1—200+01+02:0

{¢1,67 ¢/2/,57 ¢’2,77 ¢3,4}7 {(rb/Q/,?n ¢/2,5}7 {¢IQ,37 ¢2,1}

a0*a1+00*201+02:o

{¢1,107 QS/Q/;;’ ¢/2,57 ¢374}7 {¢g,57 ¢2,7}7 {¢é,37 ¢2,1}

ag—a;+cg+c1—2c=0

{#1,14, 05 5. 02,1, 3,4}, {955, 27}, {53, b5}

ag—a; —cg—c1+2c=0

{¢1,87 ¢l2,37 ¢2,17 ¢3,2}7 {¢g,57 ¢277}7 {¢,2,,37 ¢l2,5}

ag—a; —cog+2c1 —co=0

{¢1,47 ¢,2,,37 (b,2,5a ¢3,2}7 {¢/2/757 ¢2,7}7 {Qb,2,37 ¢2,1}

ag— a1 +2cog—cp1 —co =0

{01.0, 955, 2.7, P32}, {053, Do 5}, 1053, P21}

ag—a1 —cg+c1 =0

{¢1,47 ¢1,67 ¢/2,31 ¢2,1}7 {¢IZI757 ¢2,7}1 {¢/2/,31 /2,5}
ay—a; —c1+cy=0

{18, 01,10, 85 5, P27}, {D53, P55}, {P23, P21}
apg—ai+cg—co=0

{#1,0, 01,14, 95 3, 05 5}, {85 5, b2.7}, {d23, P21}
ag—a; —cog+co=0

{b1,8: 01,6, 02,3, D5 5}, {025, P27}, {do3, P21}
ag—ai1 +cp —cy =0

{14,114, 85 5, P27}, {85 5,55}, {D2.3, P21}
ag—ai1 +cg—cy1 =0

{¢1,07 ¢1,107 ¢l2,37 ¢271}7 {¢g,57 ¢2,7}7 {¢l2l,37 ¢l2,5}
apg —ayp = 0

{01,0,01,6}, {B1,4, d1,10}, (D18, P14}, {P5 5, D27}, {D55, d5 5}, {h 30 P21},

{¢3,2, P34}



Ts 7_t 7_sTthTt — Tth Tth TtT57
H,(Gs) :< To, Te | (Ts—q**)(Ts+q*) =0, >
(Te — @) (Te — 3g°)(T: — (56°2) =0

For all exceptional complex reflection groups: Rouquierblockdata.g. l




Ts 7_t 7_sTthTt — Tth Tth TtT57
H,(Gs) :< To, Te | (Ts—q**)(Ts+q*) =0, >
(Te — @) (Te — 3g°)(T: — (56°2) =0

For all exceptional complex reflection groups: Rouquierblockdata.g. l
For the Ariki-Koike algebras: RBAK.g. l




Anything else
to add?




Theorem (Lusztig)

The functions a and A are constant on the families of characters.
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Theorem (Lusztig)

The functions a and A are constant on the families of characters.

The function a + A is constant on the Rouquier families of any cyclotomic Hecke
algebra associated with a complex reflection group.

Theorem (Broué-Kim)

The functions a and A are constant on the Rouquier families of any cyclotomic
Ariki-Koike algebra.

The functions a and A are constant on the Rouquier families of any cyclotomic
Hecke algebra associated with an exceptional complex reflection group.
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A cyclotomic polynomial in one variable has valuation O.

We have
P "’E,i(H vei) e W i(go M),

5.J
We distinguish two cases:

@ If Y as;;jms; >0, we add 0 to a(E).

@ If > asjms;j <0, we add —degree(Ve ;) (D asjms;) to a(E).

For all excpetional complex reflection groups: DegVal.g.




where &y € Zg, by € Z, Cy is a set of K-cyclotomic polynomials and ny ¢y e N.If ¢ : vi> y" (neZ)
is a cyclotomic specialization, then

o ay, =n-valy(sy(v)).
o Ay, =n-deg,(sy(v)).

Therefore, in order to verify Theorem 6.1 for W, it suffices to check whether the degree and the
valuation of the generic Schur elements remain constant on the Rouquier blocks associated with no
essential hyperplane. Note that the generic Schur elements coincide with the Schur elements of the
“spetsial” cyclotomic Hecke algebra and the Rouquier blocks associated with no essential hyperplane
coincide with its Rouquier blocks.

We can easily create an algorithm which returns “true” if the degree and the valuation of the

o £ ol A

Theorem 6.1 holds for W.
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Appendix A

symmetric subalgebra of A, if it satisfies the following two conditions:

1. A is free (of finite rank) as an O-module and the restriction Res?(t) of the form ¢ to A is a




Thank you for listening (everyone for the past hour, Jean for the past ten years)!

DA



