Schur elements and Rouquier blocks

Maria Chlouveraki

EPFL
Nikolaus Conference 2007

December 7, 2007

Hecke algebras of complex reflection groups

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

$$
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
$$

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

$$
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
$$

and a field of realization K_{W} (with ring of integers \mathbb{Z}_{K}):

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

$$
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
$$

and a field of realization K_{W} (with ring of integers \mathbb{Z}_{K}): $K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)$.

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

$$
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
$$

and a field of realization K_{W} (with ring of integers \mathbb{Z}_{K}): $K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)$.

- We choose a set of indeterminates

$$
\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}
$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

$$
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
$$

and a field of realization K_{W} (with ring of integers \mathbb{Z}_{K}): $K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)$.

- We choose a set of indeterminates

$$
\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}
$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s, j}=u_{t, j}$ for all j).

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

$$
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
$$

and a field of realization K_{W} (with ring of integers \mathbb{Z}_{K}): $K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)$.

- We choose a set of indeterminates

$$
\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}
$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s, j}=u_{t, j}$ for all j).

- The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ and has a presentation of the form :

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

$$
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
$$

and a field of realization K_{W} (with ring of integers \mathbb{Z}_{K}): $K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)$.

- We choose a set of indeterminates

$$
\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}
$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s, j}=u_{t, j}$ for all j).

- The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ and has a presentation of the form :

$$
\begin{array}{ll}
\mathcal{H}\left(G_{4}\right)=<S, T \mid \quad S T S=T S T, & \left(S-u_{0}\right)\left(S-u_{1}\right)\left(S-u_{2}\right)=0 \\
& \left(T-u_{0}\right)\left(T-u_{1}\right)\left(T-u_{2}\right)=0>
\end{array}
$$

Hecke algebras of complex reflection groups

- Every complex reflection group W has a nice "presentation a la Coxeter" :

$$
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
$$

and a field of realization K_{W} (with ring of integers \mathbb{Z}_{K}): $K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)$.

- We choose a set of indeterminates

$$
\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}
$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s, j}=u_{t, j}$ for all j).

- The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ and has a presentation of the form :

$$
\begin{array}{ll}
\mathcal{H}\left(G_{4}\right)=<S, T \mid \quad S T S=T S T, & \left(S-u_{0}\right)\left(S-u_{1}\right)\left(S-u_{2}\right)=0 \\
& \left(T-u_{0}\right)\left(T-u_{1}\right)\left(T-u_{2}\right)=0>
\end{array}
$$

- $u_{j} \mapsto \zeta_{3}^{j}(j=0,1,2), \mathcal{H}\left(G_{4}\right) \mapsto \mathbb{Z}_{K}\left[G_{4}\right]$.

Assumptions

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$-module of rank $|W|$.
- There exists a unique linear form $t: \mathcal{H}(W) \rightarrow \mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ such that
- t is a symmetrizing form on $\mathcal{H}(W)$.
- t satisfies some other conditions.

Assumptions

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$-module of rank $|W|$.
- There exists a unique linear form $t: \mathcal{H}(W) \rightarrow \mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ such that
- t is a symmetrizing form on $\mathcal{H}(W)$.
- t satisfies some other conditions.

Thanks to a theorem by G.Malle, we can find a set of indeterminates \mathbf{v} such that the algebra $K_{W}(\mathbf{v}) \mathcal{H}(W)$ is split semisimple

Assumptions

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$-module of rank $|W|$.
- There exists a unique linear form $t: \mathcal{H}(W) \rightarrow \mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ such that
- t is a symmetrizing form on $\mathcal{H}(W)$.
- t satisfies some other conditions.

Thanks to a theorem by G.Malle, we can find a set of indeterminates \mathbf{v} such that the algebra $K_{W}(\mathbf{v}) \mathcal{H}(W)$ is split semisimple $\left(\mathbf{v}=\left(v_{j}\right)_{0 \leq j \leq 2}\right.$ where $\left.v_{j}^{6}:=\zeta_{j}^{-3} u_{j}\right)$.

Assumptions

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$-module of rank $|W|$.
- There exists a unique linear form $t: \mathcal{H}(W) \rightarrow \mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ such that
- t is a symmetrizing form on $\mathcal{H}(W)$.
- t satisfies some other conditions.

Thanks to a theorem by G.Malle, we can find a set of indeterminates \mathbf{v} such that the algebra $K_{W}(\mathbf{v}) \mathcal{H}(W)$ is split semisimple $\left(\mathbf{v}=\left(v_{j}\right)_{0 \leq j \leq 2}\right.$ where $\left.v_{j}^{6}:=\zeta_{j}^{-3} u_{j}\right)$.

We have that

$$
t=\sum_{\chi_{\mathbf{v}} \in \operatorname{Irr}\left(K_{w}(v) \mathcal{H}(W)\right)} \frac{1}{s_{\chi_{\mathbf{v}}}} \chi_{\mathbf{v}},
$$

where $s_{\chi_{v}}$ is the Schur element associated with the irreducible character χ_{v}.

Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_{K}-algebra morphism $\phi: v_{j} \mapsto y^{n_{j}}$ where $n_{j} \in \mathbb{Z}$ for all j. The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}\left[y, y^{-1}\right]$-algebra obtained as the specialization of the \mathcal{H} via the morphism ϕ.

Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_{K}-algebra morphism $\phi: v_{j} \mapsto y^{n_{j}}$ where $n_{j} \in \mathbb{Z}$ for all j. The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}\left[y, y^{-1}\right]$-algebra obtained as the specialization of the \mathcal{H} via the morphism ϕ.

Proposition (C.)

The algebra $K_{W}(y) \mathcal{H}_{\phi}$ is split semisimple.

Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_{k}-algebra morphism $\phi: v_{j} \mapsto y^{n_{j}}$ where $n_{j} \in \mathbb{Z}$ for all j. The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}\left[y, y^{-1}\right]$-algebra obtained as the specialization of the \mathcal{H} via the morphism ϕ.

Proposition (C.)

The algebra $K_{W}(y) \mathcal{H}_{\phi}$ is split semisimple.

By "Tits' deformation theorem", we obtain that the specialization $v_{j} \mapsto 1$ induces the following bijections :

$$
\begin{array}{ccccc}
\operatorname{Irr}\left(K_{W}(\mathbf{v}) \mathcal{H}\right) & \leftrightarrow & \operatorname{Irr}\left(K_{W}(y) \mathcal{H}_{\phi}\right) & \leftrightarrow & \operatorname{Irr}(W) \\
\chi_{\mathbf{v}} & \mapsto & \chi_{\phi} & \mapsto & \chi
\end{array}
$$

Rouquier blocks

Definition

We call Rouquier ring of K_{W} and denote by $\mathcal{R}_{K}(y)$ the \mathbb{Z}_{K}-subalgebra of $K_{W}(y)$

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right] .
$$

Rouquier blocks

Definition

We call Rouquier ring of K_{W} and denote by $\mathcal{R}_{K}(y)$ the \mathbb{Z}_{K}-subalgebra of $K_{W}(y)$

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right] .
$$

Let ϕ be a cyclotomic specialization. The Rouquier blocks of the corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y) \mathcal{H}_{\phi}$,

Rouquier blocks

Definition

We call Rouquier ring of K_{W} and denote by $\mathcal{R}_{K}(y)$ the \mathbb{Z}_{K}-subalgebra of $K_{W}(y)$

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right] .
$$

Let ϕ be a cyclotomic specialization. The Rouquier blocks of the corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y) \mathcal{H}_{\phi}$, i.e., the minimal partition $\mathcal{B R}\left(\mathcal{H}_{\phi}\right)$ of $\operatorname{Irr}(W)$ for the property:

$$
\text { For all } B \in \mathcal{B} \mathcal{R}\left(\mathcal{H}_{\phi}\right) \text { and } h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{K}(y) \text {. }
$$

Rouquier blocks

Definition

We call Rouquier ring of K_{W} and denote by $\mathcal{R}_{K}(y)$ the \mathbb{Z}_{K}-subalgebra of $K_{W}(y)$

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right] .
$$

Let ϕ be a cyclotomic specialization. The Rouquier blocks of the corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y) \mathcal{H}_{\phi}$, i.e., the minimal partition $\mathcal{B R}\left(\mathcal{H}_{\phi}\right)$ of $\operatorname{Irr}(W)$ for the property:

$$
\text { For all } B \in \mathcal{B} \mathcal{R}\left(\mathcal{H}_{\phi}\right) \text { and } h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{K}(y) \text {. }
$$

W Weyl group : Rouquier blocks \equiv "families of characters"

Rouquier blocks

Definition

We call Rouquier ring of K_{W} and denote by $\mathcal{R}_{K}(y)$ the \mathbb{Z}_{K}-subalgebra of $K_{W}(y)$

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right] .
$$

Let ϕ be a cyclotomic specialization. The Rouquier blocks of the corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y) \mathcal{H}_{\phi}$, i.e., the minimal partition $\mathcal{B R}\left(\mathcal{H}_{\phi}\right)$ of $\operatorname{Irr}(W)$ for the property:

$$
\text { For all } B \in \mathcal{B} \mathcal{R}\left(\mathcal{H}_{\phi}\right) \text { and } h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{K}(y) \text {. }
$$

W Weyl group : Rouquier blocks \equiv "families of characters" W c.r.g.(non-Weyl) : Rouquier blocks \equiv ?

Generic Schur elements

Theorem (C.)

The Schur element $s_{\chi}(\mathbf{v})$ associated with the character $\chi_{\mathbf{v}}$ of $K(\mathbf{v}) \mathcal{H}$ is an element of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ of the form

$$
s_{\chi}(\mathbf{v})=\xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi, i}\left(M_{\chi, i}\right)^{n_{\chi, i}}
$$

where

- ξ_{χ} is an element of \mathbb{Z}_{K},
- N_{χ} is a degree zero monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$,
- I_{χ} is an index set,
- $\left(\Psi_{\chi, i}\right)_{i \in I_{\chi}}$ is a family of K-cyclotomic polynomials in one variable,
- $\left(M_{\chi, i}\right)_{i \in I_{\chi}}$ is a family of degree zero primitive monomials in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$,
- $\left(n_{\chi, i}\right)_{i \in I_{\chi}}$ is a family of positive integers.

\mathfrak{p}-essential monomials and \mathfrak{p}-essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{K}.

\mathfrak{p}-essential monomials and \mathfrak{p}-essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{K}.

Definition

Let $M=\prod_{j} v_{j}^{a_{j}}$ be a primitive monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, i.e., $\operatorname{gcd}\left(a_{j}\right)=1$.

\mathfrak{p}-essential monomials and \mathfrak{p}-essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{K}.

Definition

Let $M=\prod_{j} v_{j}^{a_{j}}$ be a primitive monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, i.e., $\operatorname{gcd}\left(a_{j}\right)=1$.

- We say that M is a \mathfrak{p}-essential monomial for W, if there exist an irreducible character χ of W and a K_{W}-cyclotomic polynomial Ψ such that

\mathfrak{p}-essential monomials and \mathfrak{p}-essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{K}.

Definition

Let $M=\prod_{j} v_{j}^{a_{j}}$ be a primitive monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, i.e., $\operatorname{gcd}\left(a_{j}\right)=1$.

- We say that M is a \mathfrak{p}-essential monomial for W, if there exist an irreducible character χ of W and a K_{W}-cyclotomic polynomial Ψ such that
(1) $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$,

\mathfrak{p}-essential monomials and \mathfrak{p}-essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{K}.

Definition

Let $M=\prod_{j} v_{j}^{a_{j}}$ be a primitive monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, i.e., $\operatorname{gcd}\left(a_{j}\right)=1$.

- We say that M is a \mathfrak{p}-essential monomial for W, if there exist an irreducible character χ of W and a K_{W}-cyclotomic polynomial Ψ such that
(1) $\psi(M)$ divides $s_{\chi}(\mathbf{v})$,
(2) $\Psi(1) \in \mathfrak{p}$.

\mathfrak{p}-essential monomials and \mathfrak{p}-essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{K}.

Definition

Let $M=\prod_{j} v_{j}^{a_{j}}$ be a primitive monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, i.e., $\operatorname{gcd}\left(a_{j}\right)=1$.

- We say that M is a \mathfrak{p}-essential monomial for W, if there exist an irreducible character χ of W and a K_{W}-cyclotomic polynomial Ψ such that
(1) $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$,
(2) $\Psi(1) \in \mathfrak{p}$.
- If M is a \mathfrak{p}-essential monomial for W, then the hyperplane H_{M} defined by $\log (M)=0$, i.e., $\sum_{j} a_{j} V_{j}=0$, is called a \mathfrak{p}-essential hyperplane for W.

\mathfrak{p}-essential monomials and \mathfrak{p}-essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{K}.

Definition

Let $M=\prod_{j} v_{j}^{a_{j}}$ be a primitive monomial in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$, i.e., $\operatorname{gcd}\left(a_{j}\right)=1$.

- We say that M is a \mathfrak{p}-essential monomial for W, if there exist an irreducible character χ of W and a K_{W}-cyclotomic polynomial Ψ such that
(1) $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$,
(2) $\Psi(1) \in \mathfrak{p}$.
- If M is a \mathfrak{p}-essential monomial for W, then the hyperplane H_{M} defined by $\log (M)=0$, i.e., $\sum_{j} a_{j} V_{j}=0$, is called a \mathfrak{p}-essential hyperplane for W.

Let $\phi: v_{j} \mapsto y^{n_{j}}$ be a cyclotomic specialization and $M=\prod_{j} v_{j}^{a_{j}}$ be a \mathfrak{p}-essential monomial for W. We have $\phi(M)=1$ if and only if the powers n_{j} belong to the \mathfrak{p}-essential hyperplane H_{M}.

\mathfrak{p}-blocks and \mathfrak{p}-essential hyperplanes

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]_{\mathfrak{p}} \mathcal{H}$.

\mathfrak{p}-blocks and \mathfrak{p}-essential hyperplanes

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]_{\mathfrak{p}} \mathcal{H}$.
Let $\mathcal{B}_{\mathfrak{p}}\left(\mathcal{H}_{\phi}\right)$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{\mathcal{K}}\left[y, y^{-1}\right]_{\mathfrak{p}} \mathcal{H}_{\phi}$.

\mathfrak{p}-blocks and \mathfrak{p}-essential hyperplanes

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{\mathcal{K}}\left[\mathbf{v}, \mathbf{v}^{-1}\right]_{\mathfrak{p}} \mathcal{H}$.
Let $\mathcal{B}_{\mathfrak{p}}\left(\mathcal{H}_{\phi}\right)$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}\left[y, y^{-1}\right]_{\mathfrak{p}} \mathcal{H}_{\phi}$.

Main Theorem (C.)

For every \mathfrak{p}-essential hyperplane H for W, there exists a partition $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:

\mathfrak{p}-blocks and \mathfrak{p}-essential hyperplanes

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{\mathcal{K}}\left[\mathbf{v}, \mathbf{v}^{-1}\right]_{\mathfrak{p}} \mathcal{H}$.
Let $\mathcal{B}_{\mathfrak{p}}\left(\mathcal{H}_{\phi}\right)$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}\left[y, y^{-1}\right]_{\mathfrak{p}} \mathcal{H}_{\phi}$.

Main Theorem (C.)

For every \mathfrak{p}-essential hyperplane H for W, there exists a partition $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:
(1) The parts of $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.

\mathfrak{p}-blocks and \mathfrak{p}-essential hyperplanes

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{\mathcal{K}}\left[\mathbf{v}, \mathbf{v}^{-1}\right]_{\mathfrak{p}} \mathcal{H}$.
Let $\mathcal{B}_{\mathfrak{p}}\left(\mathcal{H}_{\phi}\right)$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}\left[y, y^{-1}\right]_{\mathfrak{p}} \mathcal{H}_{\phi}$.

Main Theorem (C.)

For every \mathfrak{p}-essential hyperplane H for W, there exists a partition $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:
(1) The parts of $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.
(2) The partition $\mathcal{B}_{\mathfrak{p}}\left(\mathcal{H}_{\phi}\right)$ is the partition generated by the partitions $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ and $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$, where H runs over the set of all \mathfrak{p}-essential hyperplanes the n_{j} belong to.

\mathfrak{p}-blocks and \mathfrak{p}-essential hyperplanes

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{\mathcal{K}}\left[\mathbf{v}, \mathbf{v}^{-1}\right]_{\mathfrak{p}} \mathcal{H}$.
Let $\mathcal{B}_{\mathfrak{p}}\left(\mathcal{H}_{\phi}\right)$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}\left[y, y^{-1}\right]_{\mathfrak{p}} \mathcal{H}_{\phi}$.

Main Theorem (C.)

For every \mathfrak{p}-essential hyperplane H for W, there exists a partition $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:
(1) The parts of $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.
(2) The partition $\mathcal{B}_{\mathfrak{p}}\left(\mathcal{H}_{\phi}\right)$ is the partition generated by the partitions $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ and $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$, where H runs over the set of all \mathfrak{p}-essential hyperplanes the n_{j} belong to.
(3) The Rouquier blocks of \mathcal{H}_{ϕ} coincide with the partition generated by the partitions $\mathcal{B}_{\mathfrak{p}}\left(\mathcal{H}_{\phi}\right)$, where \mathfrak{p} runs over the set of all prime ideals of \mathbb{Z}_{K}.

The characters of G_{4} are denoted by $\chi_{d, b}$, where d is their degree and b is the valuation of their fake degree. These are $\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}$.

The characters of G_{4} are denoted by $\chi_{d, b}$, where d is their degree and b is the valuation of their fake degree. These are $\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}$.

2-essential in purple, 3-essential in green

$$
\begin{aligned}
s_{1,0}= & \Phi_{9}^{\prime \prime}\left(v_{0} v_{1}^{-1}\right) \cdot \Phi_{18}^{\prime}\left(v_{0} v_{1}^{-1}\right) \cdot \Phi_{4}\left(v_{0} v_{1}^{-1}\right) \cdot \Phi_{12}^{\prime}\left(v_{0} v_{1}^{-1}\right) \cdot \Phi_{12}^{\prime \prime}\left(v_{0} v_{1}^{-1}\right) \cdot \\
& \Phi_{36}^{\prime 3}\left(v_{0} v_{1}^{-1}\right) \cdot \Phi_{9}^{\prime}\left(v_{0} v_{2}^{-1}\right) \cdot \Phi_{18}^{\prime \prime}\left(v_{0} v_{2}^{-1}\right) \cdot \Phi_{4}\left(v_{0} v_{2}^{-1}\right) \cdot \Phi_{12}^{\prime}\left(v_{0} v_{2}^{-1}\right) \cdot \\
& \Phi_{12}^{\prime \prime}\left(v_{0} v_{2}^{-1}\right) \cdot \Phi_{36}^{\prime \prime}\left(v_{0} v_{2}^{-1}\right) \cdot \Phi_{4}\left(v_{0}^{2} v_{1}^{-1} v_{2}^{-1}\right) \cdot \Phi_{12}^{\prime}\left(v_{0}^{2} v_{1}^{-1} v_{2}^{-1}\right) \cdot \\
& \Phi_{12}^{\prime \prime}\left(v_{0}^{2} v_{1}^{-1} v_{2}^{-1}\right) \\
s_{2,5}= & -\zeta_{3}^{2} v_{2}^{6} v_{1}^{-6} \Phi_{9}^{\prime}\left(v_{1} v_{0}^{-1}\right) \cdot \Phi_{18}^{\prime \prime}\left(v_{1} v_{0}^{-1}\right) \cdot \Phi_{9}^{\prime \prime}\left(v_{2} v_{0}^{-1}\right) \cdot \Phi_{18}^{\prime}\left(v_{2} v_{0}^{-1}\right) \cdot \\
& \Phi_{4}\left(v_{1} v_{2}^{-1}\right) \cdot \Phi_{12}^{\prime}\left(v_{1} v_{2}^{-1}\right) \cdot \Phi_{12}^{\prime \prime}\left(v_{1} v_{2}^{-1}\right) \cdot \Phi_{36}^{\prime}\left(v_{1} v_{2}^{-1}\right) \cdot \Phi_{4}\left(v_{0}^{-2} v_{1} v_{2}\right) \cdot \\
& \Phi_{12}^{\prime}\left(v_{0}^{-2} v_{1} v_{2}\right) \cdot \Phi_{12}^{\prime \prime}\left(v_{0}^{-2} v_{1} v_{2}\right) \\
s_{3,2}= & \Phi_{4}\left(v_{0}^{2} v_{1}^{-1} v_{2}^{-1}\right) \cdot \Phi_{12}^{\prime}\left(v_{0}^{2} v_{1}^{-1} v_{2}^{-1}\right) \cdot \Phi_{12}^{\prime \prime}\left(v_{0}^{2} v_{1}^{-1} v_{2}^{-1}\right) \cdot \Phi_{4}\left(v_{1}^{2} v_{2}^{-1} v_{0}^{-1}\right) \cdot \\
& \Phi_{12}^{\prime}\left(v_{1}^{2} v_{2}^{-1} v_{0}^{-1}\right) \cdot \Phi_{12}^{\prime \prime}\left(v_{1}^{2} v_{2}^{-1} v_{0}^{-1}\right) \cdot \Phi_{4}\left(v_{2}^{2} v_{0}^{-1} v_{1}^{-1}\right) \cdot \\
& \Phi_{12}^{\prime}\left(v_{2}^{2} v_{0}^{-1} v_{1}^{-1}\right) \cdot \Phi_{12}^{\prime \prime}\left(v_{2}^{2} v_{0}^{-1} v_{1}^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{4}(x)=x^{2}+1, \Phi_{9}^{\prime}(x)=x^{3}-\zeta_{3}, \Phi_{9}^{\prime \prime}(x)=x^{3}-\zeta_{3}^{2}, \Phi_{12}^{\prime \prime}(x)=x^{2}+\zeta_{3} \\
& \Phi_{12}^{\prime}(x)=x^{2}+\zeta_{3}^{2}, \Phi_{18}^{\prime \prime}(x)=x^{3}+\zeta_{3}, \Phi_{18}^{\prime}(x)=x^{3}+\zeta_{3}^{2}, \Phi_{36}^{\prime \prime}(x)=x^{6}+\zeta_{3} \\
& \Phi_{36}^{\prime}(x)=x^{6}+\zeta_{3}^{2}
\end{aligned}
$$

The essential monomials for G_{4} are

$$
\begin{gathered}
M_{0,1}:=v_{0} v_{1}^{-1}, M_{0,2}:=v_{0} v_{2}^{-1}, M_{1,2}:=v_{1} v_{2}^{-1}, \\
M_{0}:=v_{0}^{2} v_{1}^{-1} v_{2}^{-1}, M_{1}:=v_{1}^{2} v_{2}^{-1} v_{0}^{-1}, M_{2}:=v_{2}^{2} v_{0}^{-1} v_{1}^{-1} .
\end{gathered}
$$

They are all 2 -essential, whereas only the first three are 3 -essential.

The essential monomials for G_{4} are

$$
\begin{gathered}
M_{0,1}:=v_{0} v_{1}^{-1}, M_{0,2}:=v_{0} v_{2}^{-1}, M_{1,2}:=v_{1} v_{2}^{-1} \\
M_{0}:=v_{0}^{2} v_{1}^{-1} v_{2}^{-1}, M_{1}:=v_{1}^{2} v_{2}^{-1} v_{0}^{-1}, M_{2}:=v_{2}^{2} v_{0}^{-1} v_{1}^{-1} .
\end{gathered}
$$

They are all 2 -essential, whereas only the first three are 3 -essential.
Let c_{0}, c_{1}, c_{2} be three indeterminates. The corresponding essential hyperplanes for G_{4} in \mathbb{C}^{3} are given by

$$
\begin{gathered}
H_{0,1}: c_{0}=c_{1}, H_{0,2}: c_{0}=c_{2}, H_{1,2}: c_{1}=c_{2}, \\
H_{0}: 2 c_{0}=c_{1}+c_{2}, H_{1}: 2 c_{1}=c_{2}+c_{0}, H_{2}: 2 c_{2}=c_{0}+c_{1} .
\end{gathered}
$$

They are all 2-essential, whereas only the first three are 3-essential.

The essential monomials for G_{4} are

$$
\begin{gathered}
M_{0,1}:=v_{0} v_{1}^{-1}, M_{0,2}:=v_{0} v_{2}^{-1}, M_{1,2}:=v_{1} v_{2}^{-1}, \\
M_{0}:=v_{0}^{2} v_{1}^{-1} v_{2}^{-1}, M_{1}:=v_{1}^{2} v_{2}^{-1} v_{0}^{-1}, M_{2}:=v_{2}^{2} v_{0}^{-1} v_{1}^{-1} .
\end{gathered}
$$

They are all 2 -essential, whereas only the first three are 3 -essential.
Let c_{0}, c_{1}, c_{2} be three indeterminates. The corresponding essential hyperplanes for G_{4} in \mathbb{C}^{3} are given by

$$
\begin{gathered}
H_{0,1}: c_{0}=c_{1}, H_{0,2}: c_{0}=c_{2}, H_{1,2}: c_{1}=c_{2}, \\
H_{0}: 2 c_{0}=c_{1}+c_{2}, H_{1}: 2 c_{1}=c_{2}+c_{0}, H_{2}: 2 c_{2}=c_{0}+c_{1} .
\end{gathered}
$$

They are all 2-essential, whereas only the first three are 3 -essential.
We have created the GAP function

$$
\text { EssentialHyperplanes }(W, p)
$$

which returns the above information for any exceptional irreducible complex reflection group W.

Hyperplane	$\mathcal{B}_{2}^{H}(\mathcal{H}) \cup \mathcal{B}_{3}^{H}(\mathcal{H})$	$\mathcal{B}_{2}^{H}(\mathcal{H})$	$\mathcal{B}_{3}^{H}(\mathcal{H})$
None	-	-	-
$H_{0,1}$	$\left(\chi_{1,0}, \chi_{1,4}, \chi_{2,1}\right)$, $\left(\chi_{2,5}, \chi_{2,3}\right)$	$\left(\chi_{1,0}, \chi_{1,4}, \chi_{2,1}\right)$	$\left(\chi_{1,0}, \chi_{1,4}\right),\left(\chi_{2,5}, \chi_{2,3}\right)$
$H_{0,2}$	$\left(\chi_{1,0}, \chi_{1,8}, \chi_{2,3}\right)$, $\left(\chi_{2,5}, \chi_{2,1}\right)$	$\left(\chi_{1,0}, \chi_{1,8}, \chi_{2,3}\right)$	$\left(\chi_{1,0}, \chi_{1,8}\right),\left(\chi_{2,5}, \chi_{2,1}\right)$
$H_{1,2}$	$\left(\chi_{1,4}, \chi_{1,8}, \chi_{2,5}\right)$, $\left(\chi_{2,3}, \chi_{2,1}\right)$	$\left(\chi_{1,4}, \chi_{1,8}, \chi_{2,5}\right)$	$\left(\chi_{1,4}, \chi_{1,8}\right),\left(\chi_{2,3}, \chi_{2,1}\right)$
H_{0}	$\left(\chi_{1,0}, \chi_{2,5}, \chi_{3,2}\right)$	$\left(\chi_{1,0}, \chi_{2,5}, \chi_{3,2}\right)$	-
H_{1}	$\left(\chi_{1,4}, \chi_{2,3}, \chi_{3,2}\right)$	$\left(\chi_{1,4}, \chi_{2,3}, \chi_{3,2}\right)$	-
H_{2}	$\left(\chi_{1,8}, \chi_{2,1}, \chi_{3,2}\right)$	$\left(\chi_{1,8}, \chi_{2,1}, \chi_{3,2}\right)$	-

Hyperplane	$\mathcal{B}_{2}^{H}(\mathcal{H}) \cup \mathcal{B}_{3}^{H}(\mathcal{H})$	$\mathcal{B}_{2}^{H}(\mathcal{H})$	$\mathcal{B}_{3}^{H}(\mathcal{H})$
None	-	-	-
$H_{0,1}$	$\left(\chi_{1,0}, \chi_{1,4}, \chi_{2,1}\right)$, $\left(\chi_{2,5}, \chi_{2,3}\right)$	$\left(\chi_{1,0}, \chi_{1,4}, \chi_{2,1}\right)$	$\left(\chi_{1,0}, \chi_{1,4}\right),\left(\chi_{2,5}, \chi_{2,3}\right)$
$H_{0,2}$	$\left(\chi_{1,0}, \chi_{1,8}, \chi_{2,3}\right)$, $\left(\chi_{2,5}, \chi_{2,1}\right)$	$\left(\chi_{1,0}, \chi_{1,8}, \chi_{2,3}\right)$	$\left(\chi_{1,0}, \chi_{1,8}\right),\left(\chi_{2,5}, \chi_{2,1}\right)$
$H_{1,2}$	$\left(\chi_{1,4}, \chi_{1,8}, \chi_{2,5}\right)$, $\left(\chi_{2,3}, \chi_{2,1}\right)$	$\left(\chi_{1,4}, \chi_{1,8}, \chi_{2,5}\right)$	$\left(\chi_{1,4}, \chi_{1,8}\right),\left(\chi_{2,3}, \chi_{2,1}\right)$
H_{0}	$\left(\chi_{1,0}, \chi_{2,5}, \chi_{3,2}\right)$	$\left(\chi_{1,0}, \chi_{2,5}, \chi_{3,2}\right)$	-
H_{1}	$\left(\chi_{1,4}, \chi_{2,3}, \chi_{3,2}\right)$	$\left(\chi_{1,4}, \chi_{2,3}, \chi_{3,2}\right)$	-
H_{2}	$\left(\chi_{1,8}, \chi_{2,1}, \chi_{3,2}\right)$	$\left(\chi_{1,8}, \chi_{2,1}, \chi_{3,2}\right)$	-

We have created the GAP functions

DisplayAllBlocks(W) and DisplayAllpBlocks(W)

which display the above information for any exceptional irreducible complex reflection group W.

Calculation of the Rouquier blocks of a cyclotomic Hecke algebra

Calculation of the Rouquier blocks of a cyclotomic Hecke algebra

$$
\begin{aligned}
\mathcal{H}_{\phi}=<S, T \mid \quad S T S=T S T, & (S-1)\left(S-\zeta_{3} x\right)\left(S-\zeta_{3}^{2} x^{2}\right)=0 \\
& (T-1)\left(T-\zeta_{3} x\right)\left(T-\zeta_{3}^{2} x^{2}\right)=0>
\end{aligned}
$$

Calculation of the Rouquier blocks of a cyclotomic Hecke algebra

$$
\begin{array}{ll}
\mathcal{H}_{\phi}=<S, T \mid \quad S T S=T S T, & (S-1)\left(S-\zeta_{3} x\right)\left(S-\zeta_{3}^{2} x^{2}\right)=0 \\
& (T-1)\left(T-\zeta_{3} x\right)\left(T-\zeta_{3}^{2} x^{2}\right)=0>
\end{array}
$$

The powers of x belong to the essential hyperplane H_{1}, thus the Rouquier blocks of \mathcal{H}_{ϕ} are

Calculation of the Rouquier blocks of a cyclotomic Hecke algebra

$$
\begin{array}{ll}
\mathcal{H}_{\phi}=<S, T \mid \quad S T S=T S T, & (S-1)\left(S-\zeta_{3} x\right)\left(S-\zeta_{3}^{2} x^{2}\right)=0 \\
& (T-1)\left(T-\zeta_{3} x\right)\left(T-\zeta_{3}^{2} x^{2}\right)=0>
\end{array}
$$

The powers of x belong to the essential hyperplane H_{1}, thus the Rouquier blocks of \mathcal{H}_{ϕ} are

$$
\left(\chi_{1,4}, \chi_{2,3}, \chi_{3,2}\right) \bigcup \text { (singletons). }
$$

Calculation of the Rouquier blocks of a cyclotomic Hecke algebra

$$
\begin{aligned}
\mathcal{H}_{\phi}=<S, T \mid \quad S T S=T S T, & (S-1)\left(S-\zeta_{3} x\right)\left(S-\zeta_{3}^{2} x^{2}\right)=0 \\
& (T-1)\left(T-\zeta_{3} x\right)\left(T-\zeta_{3}^{2} x^{2}\right)=0>
\end{aligned}
$$

The powers of x belong to the essential hyperplane H_{1}, thus the Rouquier blocks of \mathcal{H}_{ϕ} are

$$
\left(\chi_{1,4}, \chi_{2,3}, \chi_{3,2}\right) \bigcup \text { (singletons). }
$$

For any exceptional irreducible complex reflection group W, the GAP function
DisplayRouquierBlocks(H)
displays the Rouquier blocks of a given cyclotomic Hecke algebra H .

Calculation of the Rouquier blocks of the group algebra

Calculation of the Rouquier blocks of the group algebra

$$
\begin{array}{ll}
\mathbb{Z}\left[\zeta_{3}\right]\left[G_{4}\right] \simeq<S, T \mid \quad S T S=T S T, & (S-1)\left(S-\zeta_{3}\right)\left(S-\zeta_{3}^{2}\right)=0 \\
& (T-1)\left(T-\zeta_{3}\right)\left(T-\zeta_{3}^{2}\right)=0>
\end{array}
$$

Calculation of the Rouquier blocks of the group algebra

$$
\begin{array}{ll}
\mathbb{Z}\left[\zeta_{3}\right]\left[G_{4}\right] \simeq<S, T \mid \quad S T S=T S T, & (S-1)\left(S-\zeta_{3}\right)\left(S-\zeta_{3}^{2}\right)=0 \\
& (T-1)\left(T-\zeta_{3}\right)\left(T-\zeta_{3}^{2}\right)=0>
\end{array}
$$

The powers of x are all 0 and they belong to all essential hyperplanes. We have:

Calculation of the Rouquier blocks of the group algebra

$$
\mathbb{Z}\left[\zeta_{3}\right]\left[G_{4}\right] \simeq<S, T \mid \quad S T S=T S T, \begin{aligned}
& (S-1)\left(S-\zeta_{3}\right)\left(S-\zeta_{3}^{2}\right)=0 \\
& \\
& \\
& (T-1)\left(T-\zeta_{3}\right)\left(T-\zeta_{3}^{2}\right)=0>
\end{aligned}
$$

The powers of x are all 0 and they belong to all essential hyperplanes. We have:
Rouquier block $\left(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}\right)$

Calculation of the Rouquier blocks of the group algebra

$$
\mathbb{Z}\left[\zeta_{3}\right]\left[G_{4}\right] \simeq<S, T \mid \quad S T S=T S T, \begin{aligned}
& (S-1)\left(S-\zeta_{3}\right)\left(S-\zeta_{3}^{2}\right)=0 \\
& \\
& \\
& (T-1)\left(T-\zeta_{3}\right)\left(T-\zeta_{3}^{2}\right)=0>
\end{aligned}
$$

The powers of x are all 0 and they belong to all essential hyperplanes. We have:

$$
\begin{aligned}
\text { Rouquier block } & \left(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}\right) \\
\text { 2-block } & \left(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}\right)
\end{aligned}
$$

Calculation of the Rouquier blocks of the group algebra

$$
\mathbb{Z}\left[\zeta_{3}\right]\left[G_{4}\right] \simeq<S, T \mid \quad S T S=T S T, \begin{aligned}
& (S-1)\left(S-\zeta_{3}\right)\left(S-\zeta_{3}^{2}\right)=0 \\
& \\
& \\
& (T-1)\left(T-\zeta_{3}\right)\left(T-\zeta_{3}^{2}\right)=0>
\end{aligned}
$$

The powers of x are all 0 and they belong to all essential hyperplanes. We have:

$$
\begin{aligned}
\text { Rouquier block } & \left(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}\right) \\
\text { 2-block } & \left(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}\right) \\
\text { 3-blocks } & \left(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}\right),\left(\chi_{2,5}, \chi_{2,3}, \chi_{2,1}\right),\left(\chi_{3,2}\right)
\end{aligned}
$$

Let y be an indeterminate and $n \in \mathbb{Z}$. Then

$$
\left(y^{n}\right)^{+}:=\left\{\begin{array}{ll}
n, & \text { if } n>0 ; \\
0, & \text { if } n \leq 0 .
\end{array} \text { and }\left(y^{n}\right)^{-}:= \begin{cases}n, & \text { if } n<0 ; \\
0, & \text { if } n \geq 0 .\end{cases}\right.
$$

Let y be an indeterminate and $n \in \mathbb{Z}$. Then

$$
\left(y^{n}\right)^{+}:=\left\{\begin{array}{ll}
n, & \text { if } n>0 ; \\
0, & \text { if } n \leq 0 .
\end{array} \text { and }\left(y^{n}\right)^{-}:= \begin{cases}n, & \text { if } n<0 ; \\
0, & \text { if } n \geq 0 .\end{cases}\right.
$$

Let $\chi \in \operatorname{Irr}(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$
s_{\chi}(\mathbf{v})=\xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi, i}\left(M_{\chi, i}\right)^{n_{\chi, i}}
$$

Let y be an indeterminate and $n \in \mathbb{Z}$. Then

$$
\left(y^{n}\right)^{+}:=\left\{\begin{array}{ll}
n, & \text { if } n>0 ; \\
0, & \text { if } n \leq 0 .
\end{array} \text { and }\left(y^{n}\right)^{-}:= \begin{cases}n, & \text { if } n<0 ; \\
0, & \text { if } n \geq 0 .\end{cases}\right.
$$

Let $\chi \in \operatorname{Irr}(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$
s_{\chi}(\mathbf{v})=\xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi, i}\left(M_{\chi, i}\right)^{n_{\chi, i}}
$$

We fix the factorization (\dagger) for $s_{\chi}(\mathbf{v})$. Let $\phi: v_{j} \mapsto y^{n_{j}}$ be a cyclotomic specialization. Then

Let y be an indeterminate and $n \in \mathbb{Z}$. Then

$$
\left(y^{n}\right)^{+}:=\left\{\begin{array}{ll}
n, & \text { if } n>0 ; \\
0, & \text { if } n \leq 0 .
\end{array} \text { and }\left(y^{n}\right)^{-}:= \begin{cases}n, & \text { if } n<0 ; \\
0, & \text { if } n \geq 0 .\end{cases}\right.
$$

Let $\chi \in \operatorname{Irr}(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$
s_{\chi}(\mathbf{v})=\xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi, i}\left(M_{\chi, i}\right)^{n_{\chi}, i}
$$

We fix the factorization (\dagger) for $s_{\chi}(\mathbf{v})$. Let $\phi: v_{j} \mapsto y^{n_{j}}$ be a cyclotomic specialization. Then

- $a_{\chi_{\phi}}:=\operatorname{val}\left(s_{\chi_{\phi}}(y)\right)=\operatorname{deg}\left(\phi\left(N_{\chi}\right)\right)+\sum_{i \in I_{\chi}} n_{\chi, j} \operatorname{deg}\left(\Psi_{\chi, i}\right)\left(\phi\left(M_{\chi, i}\right)\right)^{-}$.

Let y be an indeterminate and $n \in \mathbb{Z}$. Then

$$
\left(y^{n}\right)^{+}:=\left\{\begin{array}{ll}
n, & \text { if } n>0 ; \\
0, & \text { if } n \leq 0 .
\end{array} \text { and }\left(y^{n}\right)^{-}:= \begin{cases}n, & \text { if } n<0 ; \\
0, & \text { if } n \geq 0 .\end{cases}\right.
$$

Let $\chi \in \operatorname{Irr}(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$
s_{\chi}(\mathbf{v})=\xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi, i}\left(M_{\chi, i}\right)^{n_{\chi, i}}
$$

We fix the factorization (\dagger) for $s_{\chi}(\mathbf{v})$. Let $\phi: v_{j} \mapsto y^{n_{j}}$ be a cyclotomic specialization. Then

- $a_{\chi_{\phi}}:=\operatorname{val}\left(s_{\chi_{\phi}}(y)\right)=\operatorname{deg}\left(\phi\left(N_{\chi}\right)\right)+\sum_{i \in I_{\chi}} n_{\chi, i} \operatorname{deg}\left(\Psi_{\chi, i}\right)\left(\phi\left(M_{\chi, i}\right)\right)^{-}$.
- $A_{\chi_{\phi}}:=\operatorname{deg}\left(s_{\chi_{\phi}}(y)\right)=\operatorname{deg}\left(\phi\left(N_{\chi}\right)\right)+\sum_{i \in I_{\chi}} n_{\chi, i} \operatorname{deg}\left(\Psi_{\chi, i}\right)\left(\phi\left(M_{\chi, i}\right)\right)^{+}$.

Let y be an indeterminate and $n \in \mathbb{Z}$. Then

$$
\left(y^{n}\right)^{+}:=\left\{\begin{array}{ll}
n, & \text { if } n>0 ; \\
0, & \text { if } n \leq 0 .
\end{array} \text { and }\left(y^{n}\right)^{-}:= \begin{cases}n, & \text { if } n<0 ; \\
0, & \text { if } n \geq 0 .\end{cases}\right.
$$

Let $\chi \in \operatorname{Irr}(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$
s_{\chi}(\mathbf{v})=\xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi, i}\left(M_{\chi, i}\right)^{n_{\chi, i}}
$$

We fix the factorization (\dagger) for $s_{\chi}(\mathbf{v})$. Let $\phi: v_{j} \mapsto y^{n_{j}}$ be a cyclotomic specialization. Then

- $a_{\chi_{\phi}}:=\operatorname{val}\left(s_{\chi_{\phi}}(y)\right)=\operatorname{deg}\left(\phi\left(N_{\chi}\right)\right)+\sum_{i \in I_{\chi}} n_{\chi, i} \operatorname{deg}\left(\Psi_{\chi, i}\right)\left(\phi\left(M_{\chi, i}\right)\right)^{-}$.
- $A_{\chi_{\phi}}:=\operatorname{deg}\left(s_{\chi_{\phi}}(y)\right)=\operatorname{deg}\left(\phi\left(N_{\chi}\right)\right)+\sum_{i \in I_{\chi}} n_{\chi, i} \operatorname{deg}\left(\Psi_{\chi, i}\right)\left(\phi\left(M_{\chi, i}\right)\right)^{+}$.

Theorem (C.)

Let W be an exceptional complex reflection group and $\chi, \psi \in \operatorname{Irr}(W)$. If the characters χ_{ϕ} and ψ_{ϕ} belong to the same Rouquier block, then

$$
a_{\chi_{\phi}}=a_{\psi_{\phi}} \text { and } A_{\chi_{\phi}}=A_{\psi_{\phi}} .
$$

