Families of characters of the imprimitive complex reflection groups

Maria Chlouveraki

EPFL
Expansion of Combinatorial Representation Theory
RIMS Workshop 2008

Complex reflection groups

Complex reflection groups

A finite reflection group on K is a finite subgroup of $G L_{K}(V)(V$ a finite dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.

Complex reflection groups

A finite reflection group on K is a finite subgroup of $G L_{K}(V)(V$ a finite dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.

- A finite reflection group on \mathbb{Q} is called a Weyl group.

Complex reflection groups

A finite reflection group on K is a finite subgroup of $G L_{K}(V)(V$ a finite dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.

- A finite reflection group on \mathbb{Q} is called a Weyl group.
- A finite reflection group on \mathbb{R} is called a (finite) Coxeter group.

Complex reflection groups

A finite reflection group on K is a finite subgroup of $G L_{K}(V)(V$ a finite dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.

- A finite reflection group on \mathbb{Q} is called a Weyl group.
- A finite reflection group on \mathbb{R} is called a (finite) Coxeter group.
- A finite reflection group on \mathbb{C} is called a complex reflection group.

The complex reflection groups were classified by Shephard and Todd in 1954. If W is an (irreducible) complex reflection group, then

The complex reflection groups were classified by Shephard and Todd in 1954. If W is an (irreducible) complex reflection group, then

- either there exist positive integers d, e, r such that W is isomorphic to $G(d e, e, r)$, where $G(d e, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in $\mu_{d e}$ and product of the non-zero entries in μ_{d},

The complex reflection groups were classified by Shephard and Todd in 1954. If W is an (irreducible) complex reflection group, then

- either there exist positive integers d, e, r such that W is isomorphic to $G(d e, e, r)$, where $G(d e, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in $\mu_{d e}$ and product of the non-zero entries in μ_{d},
- or W is isomorphic to an exceptional group $G_{n}(n=4, \ldots, 37)$.

Generic Hecke algebras

Generic Hecke algebras

- Every complex reflection group W has an Coxeter-like presentation :

Generic Hecke algebras

- Every complex reflection group W has an Coxeter-like presentation :

$$
\begin{gathered}
G_{2}=<s, t \mid s t s t s t=t s t s t s, s^{2}=t^{2}=1> \\
G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
\end{gathered}
$$

Generic Hecke algebras

- Every complex reflection group W has an Coxeter-like presentation :

$$
\begin{gathered}
G_{2}=<s, t \mid s t s t s t=t s t s t s, s^{2}=t^{2}=1> \\
\quad G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
\end{gathered}
$$ and a field of realization K :

Generic Hecke algebras

- Every complex reflection group W has an Coxeter-like presentation :

$$
\begin{gathered}
G_{2}=<s, t \mid s t s t s t=t s t s t s, s^{2}=t^{2}=1> \\
\quad G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
\end{gathered}
$$ and a field of realization K :

$$
K_{G_{2}}=\mathbb{Q}, K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)
$$

Generic Hecke algebras

- Every complex reflection group W has an Coxeter-like presentation:

$$
\begin{aligned}
& G_{2}=<s, t \mid \text { ststst }=t s t s t s, s^{2}=t^{2}=1> \\
& \quad G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
\end{aligned}
$$

and a field of realization K :

$$
K_{G_{2}}=\mathbb{Q}, K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)
$$

- We choose a set of indeterminates $\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}$, where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s, j}=u_{t, j}$ for all j).

Generic Hecke algebras

- Every complex reflection group W has an Coxeter-like presentation :

$$
\begin{aligned}
& G_{2}=<s, t \mid s t s t s t=t s t s t s, s^{2}=t^{2}=1> \\
& \quad G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
\end{aligned}
$$

and a field of realization K :

$$
K_{G_{2}}=\mathbb{Q}, \quad K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)
$$

- We choose a set of indeterminates $\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}$, where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s, j}=u_{t, j}$ for all j).
- The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ and has a presentation of the form:

Generic Hecke algebras

- Every complex reflection group W has an Coxeter-like presentation :

$$
\begin{aligned}
& G_{2}=<s, t \mid s t s t s t=t s t s t s, s^{2}=t^{2}=1> \\
& \quad G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
\end{aligned}
$$

and a field of realization K :

$$
K_{G_{2}}=\mathbb{Q}, K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)
$$

- We choose a set of indeterminates $\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}$, where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s, j}=u_{t, j}$ for all j).
- The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ and has a presentation of the form:

$$
\begin{aligned}
\mathcal{H}\left(G_{2}\right)=<S, T \mid S T S T S T=T S T S T S, & \left(S-u_{0}\right)\left(S-u_{1}\right)=0 \\
& \left(T-w_{0}\right)\left(T-w_{1}\right)=0>
\end{aligned}
$$

Generic Hecke algebras

- Every complex reflection group W has an Coxeter-like presentation:

$$
\begin{aligned}
& G_{2}=<s, t \mid \text { ststst }=t s t s t s, s^{2}=t^{2}=1> \\
& \quad G_{4}=<s, t \mid s t s=t s t, s^{3}=t^{3}=1>
\end{aligned}
$$

and a field of realization K :

$$
K_{G_{2}}=\mathbb{Q}, K_{G_{4}}=\mathbb{Q}\left(\zeta_{3}\right)
$$

- We choose a set of indeterminates $\mathbf{u}=\left(u_{s, j}\right)_{s, 0 \leq j \leq \mathbf{o}(s)-1}$, where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s, j}=u_{t, j}$ for all j).
- The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}\left[\mathbf{u}, \mathbf{u}^{-1}\right]$ and has a presentation of the form:

$$
\begin{aligned}
\mathcal{H}\left(G_{2}\right)=<S, T \mid S T S T S T=T S T S T S, & \left(S-u_{0}\right)\left(S-u_{1}\right)=0 \\
& \left(T-w_{0}\right)\left(T-w_{1}\right)=0> \\
\mathcal{H}\left(G_{4}\right)=<S, T \mid S T S=T S T, & \left(S-u_{0}\right)\left(S-u_{1}\right)\left(S-u_{2}\right)=0 \\
& \left(T-u_{0}\right)\left(T-u_{1}\right)\left(T-u_{2}\right)=0>
\end{aligned}
$$

Remark: The specialization $u_{s, j} \mapsto \zeta_{\mathbf{o}(s)}^{j}$ sends $\mathcal{H}(W)$ to $\mathbb{Z}_{K} W$.

Remark: The specialization $u_{s, j} \mapsto \zeta_{\mathbf{o}(s)}^{j}$ sends $\mathcal{H}(W)$ to $\mathbb{Z}_{K} W$.

Theorem (Malle)

Let $\mathbf{v}=\left(v_{s, j}\right)_{s, j}$ be a set of indeterminates such that, for all s, j, we have

$$
v_{s, j}^{|\mu(K)|}:=\zeta_{\mathbf{o}(s)}^{-j} u_{s, j}
$$

where $\mu(K)$ is the group of all the roots of unity in K. Then the $K(\mathbf{v})$-algebra $K(\mathbf{v}) \mathcal{H}(W)$ is split semisimple.

Remark: The specialization $u_{s, j} \mapsto \zeta_{\mathbf{o}(s)}^{j}$ sends $\mathcal{H}(W)$ to $\mathbb{Z}_{K} W$.

Theorem (Malle)

Let $\mathbf{v}=\left(v_{s, j}\right)_{s, j}$ be a set of indeterminates such that, for all s, j, we have

$$
v_{s, j}^{|\mu(K)|}:=\zeta_{\mathbf{o}(s)}^{-j} u_{s, j}
$$

where $\mu(K)$ is the group of all the roots of unity in K. Then the $K(\mathbf{v})$-algebra $K(\mathbf{v}) \mathcal{H}(W)$ is split semisimple.

By "Tits' deformation theorem", the specialization $v_{s, j} \mapsto 1$ induces a bijection

$$
\begin{array}{ccc}
\operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W)) & \leftrightarrow & \operatorname{Irr}(W) \\
\chi_{\mathbf{v}} & \mapsto & \chi
\end{array}
$$

Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$
t=\sum_{\chi \in \operatorname{Irr}(W)} \frac{1}{s_{\chi}} \chi_{\mathbf{v}}
$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W))$.

Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$
t=\sum_{\chi \in \operatorname{Irr}(W)} \frac{1}{s_{\chi}} \chi_{\mathbf{v}},
$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W))$.

Theorem (C.)

Let $\chi \in \operatorname{Irr}(W)$. The Schur element s_{χ} is an element of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ whose irreducible factors (in $K\left[\mathbf{v}, \mathbf{v}^{-1}\right]$) are of the form: $\Psi(M)$

Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$
t=\sum_{\chi \in \operatorname{Irr}(W)} \frac{1}{s_{\chi}} \chi_{\mathbf{v}},
$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W))$.

Theorem (C.)

Let $\chi \in \operatorname{Irr}(W)$. The Schur element s_{χ} is an element of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ whose irreducible factors (in $K\left[\mathbf{v}, \mathbf{v}^{-1}\right]$) are of the form: $\Psi(M)$ where

Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$
t=\sum_{\chi \in \operatorname{Irr}(W)} \frac{1}{s_{\chi}} \chi_{\mathbf{v}},
$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W))$.

Theorem (C.)

Let $\chi \in \operatorname{Irr}(W)$. The Schur element s_{χ} is an element of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ whose irreducible factors (in $K\left[\mathbf{v}, \mathbf{v}^{-1}\right]$) are of the form: $\Psi(M)$ where

- Ψ is a K-cyclotomic polynomial in one variable,

Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$
t=\sum_{\chi \in \operatorname{Irr}(W)} \frac{1}{s_{\chi}} \chi_{\mathbf{v}}
$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W))$.

Theorem (C.)

Let $\chi \in \operatorname{Irr}(W)$. The Schur element s_{χ} is an element of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ whose irreducible factors (in $K\left[\mathbf{v}, \mathbf{v}^{-1}\right]$) are of the form: $\Psi(M)$ where

- Ψ is a K-cyclotomic polynomial in one variable,
- M is a primitive monomial of degree 0 ,

Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$
t=\sum_{\chi \in \operatorname{Irr}(W)} \frac{1}{s_{\chi}} \chi_{\mathbf{v}}
$$

where s_{χ} is the Schur element associated to $\chi_{\mathbf{v}} \in \operatorname{Irr}(K(\mathbf{v}) \mathcal{H}(W))$.

Theorem (C.)

Let $\chi \in \operatorname{Irr}(W)$. The Schur element s_{χ} is an element of $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ whose irreducible factors (in $K\left[\mathbf{v}, \mathbf{v}^{-1}\right]$) are of the form: $\Psi(M)$ where

- Ψ is a K-cyclotomic polynomial in one variable,
- M is a primitive monomial of degree 0 , i.e., if $M=\prod_{s, j} v_{s, j}^{a_{s, j}}$, then $\operatorname{gcd}\left(a_{s, j}\right)=1$ and $\sum_{s, j} a_{s, j}=0$.

Schur elements of $G_{2}: X_{0}^{2}:=u_{0}, X_{1}^{2}:=-u_{1}, Y_{0}^{2}:=w_{0}, Y_{1}^{2}:=-w_{1}$.

$$
\begin{aligned}
& s_{1}=\Phi_{4}\left(X_{0} X_{1}^{-1}\right) \cdot \Phi_{4}\left(Y_{0} Y_{1}^{-1}\right) \cdot \Phi_{3}\left(X_{0} Y_{0} X_{1}^{-1} Y_{1}^{-1}\right) \cdot \Phi_{6}\left(X_{0} Y_{0} X_{1}^{-1} Y_{1}^{-1}\right) \\
& s_{2}=2 \cdot X_{1}^{2} X_{0}^{-2} \cdot \Phi_{3}\left(X_{0} Y_{0} X_{1}^{-1} Y_{1}^{-1}\right) \cdot \Phi_{6}\left(X_{0} Y_{1} X_{1}^{-1} Y_{0}^{-1}\right)
\end{aligned}
$$

$$
\Phi_{4}(x)=x^{2}+1, \quad \Phi_{3}(x)=x^{2}+x+1, \quad \Phi_{6}(x)=x^{2}-x+1 .
$$

Cyclotomic Hecke algebras

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_{K}-algebra morphism $\phi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[y, y^{-1}\right]$ of the form:

$$
\phi: v_{s, j} \mapsto y^{n_{s, j}} \text { where } n_{s, j} \in \mathbb{Z} \text { for all } s \text { and } j .
$$

Cyclotomic Hecke algebras

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_{K}-algebra morphism $\phi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[y, y^{-1}\right]$ of the form:

$$
\phi: v_{s, j} \mapsto y^{n_{s, j}} \text { where } n_{s, j} \in \mathbb{Z} \text { for all } s \text { and } j .
$$

The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}\left[y, y^{-1}\right]$-algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ.

Cyclotomic Hecke algebras

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_{K}-algebra morphism $\phi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[y, y^{-1}\right]$ of the form:

$$
\phi: v_{s, j} \mapsto y^{n_{s, j}} \text { where } n_{s, j} \in \mathbb{Z} \text { for all } s \text { and } j .
$$

The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}\left[y, y^{-1}\right]$-algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ.

If $q:=y^{|\mu(K)|}$, then the morphism ϕ can be also described as follows:

$$
\phi: u_{s, j} \mapsto \zeta_{\mathbf{o}(s)}^{j} q^{n_{s, j}} .
$$

Cyclotomic Hecke algebras

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_{K}-algebra morphism $\phi: \mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right] \rightarrow \mathbb{Z}_{K}\left[y, y^{-1}\right]$ of the form:

$$
\phi: v_{s, j} \mapsto y^{n_{s, j}} \text { where } n_{s, j} \in \mathbb{Z} \text { for all } s \text { and } j .
$$

The corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} is the $\mathbb{Z}_{K}\left[y, y^{-1}\right]$-algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ.

If $q:=y^{|\mu(K)|}$, then the morphism ϕ can be also described as follows:

$$
\phi: u_{s, j} \mapsto \zeta_{\mathbf{o}(s)}^{j} q^{n_{s, j}}
$$

Proposition (C.)

The algebra $K(y) \mathcal{H}_{\phi}$ is split semisimple.

By "Tits' deformation theorem", we obtain that the specialization $v_{s, j} \mapsto 1$ induces the following bijections :

$$
\begin{array}{ccccc}
\operatorname{Irr}(K(\mathbf{v}) \mathcal{H}) & \leftrightarrow & \operatorname{Irr}\left(K(y) \mathcal{H}_{\phi}\right) & \leftrightarrow & \operatorname{Irr}(W) \\
\chi_{\mathbf{v}} & \mapsto & \chi_{\phi} & \mapsto & \chi
\end{array}
$$

By "Tits' deformation theorem", we obtain that the specialization $v_{s, j} \mapsto 1$ induces the following bijections :

$$
\begin{array}{ccccc}
\operatorname{Irr}(K(\mathbf{v}) \mathcal{H}) & \leftrightarrow & \operatorname{Irr}\left(K(y) \mathcal{H}_{\phi}\right) & \leftrightarrow & \operatorname{Irr}(W) \\
\chi_{\mathbf{v}} & \mapsto & \chi_{\phi} & \mapsto & \chi
\end{array}
$$

Proposition

The Schur element $s_{\chi_{\phi}}(y)$ associated to the irreducible character χ_{ϕ} of $K(y) \mathcal{H}_{\phi}$ is a Laurent polynomial in y of the form

$$
s_{\chi_{\phi}}(y)=\psi_{\chi_{\phi}} y^{a \chi_{\phi}} \prod_{\Phi \in C_{K}} \Phi(y)^{n_{\chi_{\phi}, \phi}},
$$

where $\psi_{\chi_{\phi}} \in \mathbb{Z}_{K}, a_{\chi_{\phi}} \in \mathbb{Z}, n_{\chi_{\phi}, \Phi} \in \mathbb{N}$ and C_{K} is a set of K-cyclotomic polynomials.

Rouquier blocks of \mathcal{H}_{ϕ}

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y) \mathcal{H}_{\phi}$, where

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right]
$$

Rouquier blocks of \mathcal{H}_{ϕ}

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y) \mathcal{H}_{\phi}$, where

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right]
$$

i.e., the partition $\mathcal{R B}\left(\mathcal{H}_{\phi}\right)$ of $\operatorname{Irr}(W)$ minimal for the property:

$$
\text { For all } B \in \mathcal{R} \mathcal{B}\left(\mathcal{H}_{\phi}\right) \text { and } h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{K}(y) \text {. }
$$

Rouquier blocks of \mathcal{H}_{ϕ}

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y) \mathcal{H}_{\phi}$, where

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right]
$$

i.e., the partition $\mathcal{R B}\left(\mathcal{H}_{\phi}\right)$ of $\operatorname{Irr}(W)$ minimal for the property:

$$
\text { For all } B \in \mathcal{R} \mathcal{B}\left(\mathcal{H}_{\phi}\right) \text { and } h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{K}(y) \text {. }
$$

W Weyl group: Rouquier blocks \equiv families of characters

Rouquier blocks of \mathcal{H}_{ϕ}

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y) \mathcal{H}_{\phi}$, where

$$
\mathcal{R}_{K}(y):=\mathbb{Z}_{K}\left[y, y^{-1},\left(y^{n}-1\right)_{n \geq 1}^{-1}\right]
$$

i.e., the partition $\mathcal{R B}\left(\mathcal{H}_{\phi}\right)$ of $\operatorname{Irr}(W)$ minimal for the property:

$$
\text { For all } B \in \mathcal{R} \mathcal{B}\left(\mathcal{H}_{\phi}\right) \text { and } h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{K}(y) \text {. }
$$

W Weyl group : Rouquier blocks \equiv families of characters
W c.r.g. (non-Weyl) : Rouquier blocks \equiv "families of characters"

Essential monomials and essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{k}.

Essential monomials and essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{k}.
A primitive monomial M in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ is called \mathfrak{p}-essential for W if there exist an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

Essential monomials and essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{k}.
A primitive monomial M in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ is called \mathfrak{p}-essential for W if there exist an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that
(1) $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$

Essential monomials and essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{k}.
A primitive monomial M in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ is called \mathfrak{p}-essential for W if there exist an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that
(1) $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$
(2) $\Psi(1) \in \mathfrak{p}$.

Essential monomials and essential hyperplanes

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_{k}.
A primitive monomial M in $\mathbb{Z}_{K}\left[\mathbf{v}, \mathbf{v}^{-1}\right]$ is called \mathfrak{p}-essential for W if there exist an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that
(1) $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$
(2) $\Psi(1) \in \mathfrak{p}$.

A primitive monomial M is called essential for W if it is \mathfrak{p}-essential for some prime ideal \mathfrak{p} of \mathbb{Z}_{K}.

Schur elements of G_{2} : 2-essential in
 , 3-essential in green.

$$
\begin{aligned}
& s_{1}=\Phi_{4}\left(X_{0} X_{1}^{-1}\right) \cdot \Phi_{4}\left(Y_{0} Y_{1}^{-1}\right) \cdot \Phi_{3}\left(X_{0} Y_{0} X_{1}^{-1} Y_{1}^{-1}\right) \cdot \Phi_{6}\left(X_{0} Y_{0} X_{1}^{-1} Y_{1}^{-1}\right) \\
& s_{2}=2 \cdot X_{1}^{2} X_{0}^{-2} \cdot \Phi_{3}\left(X_{0} Y_{0} X_{1}^{-1} Y_{1}^{-1}\right) \cdot \Phi_{6}\left(X_{0} Y_{1} X_{1}^{-1} Y_{0}^{-1}\right)
\end{aligned}
$$

$$
\begin{array}{lll}
\Phi_{4}(x)=x^{2}+1, & \Phi_{3}(x)=x^{2}+x+1, & \Phi_{6}(x)=x^{2}-x+1 . \\
\Phi_{4}(1)=2, & \Phi_{3}(1)=3, & \Phi_{6}(1)=1 .
\end{array}
$$

Let $\phi: v_{s, j} \mapsto y^{n_{s, j}}$ be a cyclotomic specialization and let $M=\prod_{s, j} v_{s, j}^{a_{s, j}}$ be an essential monomial for W.

Let $\phi: v_{s, j} \mapsto y^{n_{s, j}}$ be a cyclotomic specialization and let $M=\prod_{s, j} v_{s, j}^{a_{s, j}}$ be an essential monomial for W. We have

$$
\phi(M)=1 \Leftrightarrow \sum_{s, j} a_{s, j} n_{s, j}=0 .
$$

Let $\phi: v_{s, j} \mapsto y^{n_{s, j}}$ be a cyclotomic specialization and let $M=\prod_{s, j} v_{s, j}^{a_{s, j}}$ be an essential monomial for W. We have

$$
\phi(M)=1 \Leftrightarrow \sum_{s, j} a_{s, j} n_{s, j}=0
$$

The hyperplane $\sum_{s, j} a_{s, j} t_{s, j}=0$ is called an essential hyperplane for W.

Let $\phi: v_{s, j} \mapsto y^{n_{s, j}}$ be a cyclotomic specialization and let $M=\prod_{s, j} v_{s, j}^{a_{s, j}}$ be an essential monomial for W. We have

$$
\phi(M)=1 \Leftrightarrow \sum_{s, j} a_{s, j} n_{s, j}=0 .
$$

The hyperplane $\sum_{s, j} a_{s, j} t_{s, j}=0$ is called an essential hyperplane for W.

- If the integers $n_{s, j}$ belong to no essential hyperplane, then the Rouquier blocks of \mathcal{H}_{ϕ} are called Rouquier blocks associated with no essential hyperplane.

Let $\phi: v_{s, j} \mapsto y^{n_{s, j}}$ be a cyclotomic specialization and let $M=\prod_{s, j} v_{s, j}^{a_{s, j}}$ be an essential monomial for W. We have

$$
\phi(M)=1 \Leftrightarrow \sum_{s, j} a_{s, j} n_{s, j}=0
$$

The hyperplane $\sum_{s, j} a_{s, j} t_{s, j}=0$ is called an essential hyperplane for W.

- If the integers $n_{s, j}$ belong to no essential hyperplane, then the Rouquier blocks of \mathcal{H}_{ϕ} are called Rouquier blocks associated with no essential hyperplane.
- If the integers $n_{s, j}$ belong to exactly one essential hyperplane H, then the Rouquier blocks of \mathcal{H}_{ϕ} are called Rouquier blocks associated with the essential hyperplane H.

Let $\phi: v_{s, j} \mapsto y^{n_{s, j}}$ be a cyclotomic specialization and let $M=\prod_{s, j} v_{s, j}^{a_{s, j}}$ be an essential monomial for W. We have

$$
\phi(M)=1 \Leftrightarrow \sum_{s, j} a_{s, j} n_{s, j}=0
$$

The hyperplane $\sum_{s, j} a_{s, j} t_{s, j}=0$ is called an essential hyperplane for W.

- If the integers $n_{s, j}$ belong to no essential hyperplane, then the Rouquier blocks of \mathcal{H}_{ϕ} are called Rouquier blocks associated with no essential hyperplane.
- If the integers $n_{s, j}$ belong to exactly one essential hyperplane H, then the Rouquier blocks of \mathcal{H}_{ϕ} are called Rouquier blocks associated with the essential hyperplane H.

Theorem (C.)

Let $\phi: v_{s, j} \mapsto y^{n_{s, j}}$ be a cyclotomic specialization. The Rouquier blocks of \mathcal{H}_{ϕ} is a partition generated by the Rouquier blocks associated with the essential hyperplanes that the $n_{s, j}$ belong to.

Combinatorics

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}\right)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{h} \geq 1
$$

Combinatorics

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}\right)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{h} \geq 1
$$

The integer $|\lambda|:=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{h}$ is called the size of λ. We also say that λ is a partition of $|\lambda|$.

Combinatorics

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}\right)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{h} \geq 1
$$

The integer $|\lambda|:=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{h}$ is called the size of λ. We also say that λ is a partition of $|\lambda|$. The integer h is called the height of λ and we set $h_{\lambda}:=h$.

Combinatorics

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}\right)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{h} \geq 1
$$

The integer $|\lambda|:=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{h}$ is called the size of λ. We also say that λ is a partition of $|\lambda|$. The integer h is called the height of λ and we set $h_{\lambda}:=h$.

To each partition λ we associate its β-number, $\beta_{\lambda}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{h}\right)$, defined by

$$
\beta_{1}:=h+\lambda_{1}-1, \beta_{2}:=h+\lambda_{2}-2, \ldots, \beta_{h}:=h+\lambda_{h}-h .
$$

Combinatorics

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}\right)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{h} \geq 1
$$

The integer $|\lambda|:=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{h}$ is called the size of λ. We also say that λ is a partition of $|\lambda|$. The integer h is called the height of λ and we set $h_{\lambda}:=h$.

To each partition λ we associate its β-number, $\beta_{\lambda}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{h}\right)$, defined by

$$
\beta_{1}:=h+\lambda_{1}-1, \beta_{2}:=h+\lambda_{2}-2, \ldots, \beta_{h}:=h+\lambda_{h}-h .
$$

Example: If $\lambda=(4,2,2,1)$, then $\beta_{\lambda}=(7,4,3,1)$.

Combinatorics

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}\right)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{h} \geq 1
$$

The integer $|\lambda|:=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{h}$ is called the size of λ. We also say that λ is a partition of $|\lambda|$. The integer h is called the height of λ and we set $h_{\lambda}:=h$.

To each partition λ we associate its β-number, $\beta_{\lambda}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{h}\right)$, defined by

$$
\beta_{1}:=h+\lambda_{1}-1, \beta_{2}:=h+\lambda_{2}-2, \ldots, \beta_{h}:=h+\lambda_{h}-h .
$$

Example: If $\lambda=(4,2,2,1)$, then $\beta_{\lambda}=(7,4,3,1)$.
Let $m \in \mathbb{N}$. The m-shifted β-number of λ is the sequence of numbers defined by

$$
\beta_{\lambda}[m]=\left(\beta_{1}+m, \beta_{2}+m, \ldots, \beta_{h}+m, m-1, m-2, \ldots, 1,0\right) .
$$

Combinatorics

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}\right)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{h} \geq 1
$$

The integer $|\lambda|:=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{h}$ is called the size of λ. We also say that λ is a partition of $|\lambda|$. The integer h is called the height of λ and we set $h_{\lambda}:=h$.

To each partition λ we associate its β-number, $\beta_{\lambda}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{h}\right)$, defined by

$$
\beta_{1}:=h+\lambda_{1}-1, \beta_{2}:=h+\lambda_{2}-2, \ldots, \beta_{h}:=h+\lambda_{h}-h .
$$

Example: If $\lambda=(4,2,2,1)$, then $\beta_{\lambda}=(7,4,3,1)$.
Let $m \in \mathbb{N}$. The m-shifted β-number of λ is the sequence of numbers defined by

$$
\beta_{\lambda}[m]=\left(\beta_{1}+m, \beta_{2}+m, \ldots, \beta_{h}+m, m-1, m-2, \ldots, 1,0\right) .
$$

Example: If $\lambda=(4,2,2,1)$, then $\beta_{\lambda}[3]=(10,7,6,4,2,1,0)$.

Let d be a positive integer. A family of d partitions $\lambda=\left(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}\right)$ is called a d-partition.

Let d be a positive integer. A family of d partitions $\lambda=\left(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}\right)$ is called a d-partition. We set

$$
h^{(a)}:=h_{\lambda^{(a)}}, \beta^{(a)}:=\beta_{\lambda^{(a)}}
$$

and we have

$$
\lambda^{(a)}=\left(\lambda_{1}^{(a)}, \lambda_{2}^{(a)}, \ldots, \lambda_{h^{(a)}}^{(a)}\right) .
$$

Let d be a positive integer. A family of d partitions $\lambda=\left(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}\right)$ is called a d-partition. We set

$$
h^{(a)}:=h_{\lambda^{(a)}}, \beta^{(a)}:=\beta_{\lambda^{(a)}}
$$

and we have

$$
\lambda^{(a)}=\left(\lambda_{1}^{(a)}, \lambda_{2}^{(a)}, \ldots, \lambda_{h^{(a)}}^{(a)}\right) .
$$

The integer

$$
|\lambda|:=\sum_{a=0}^{d-1}\left|\lambda^{(a)}\right|
$$

is called the size of λ. We also say that λ is a d-partition of $|\lambda|$.

Let d be a positive integer. A family of d partitions $\lambda=\left(\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}\right)$ is called a d-partition. We set

$$
h^{(a)}:=h_{\lambda^{(a)}}, \quad \beta^{(a)}:=\beta_{\lambda^{(a)}}
$$

and we have

$$
\lambda^{(a)}=\left(\lambda_{1}^{(a)}, \lambda_{2}^{(a)}, \ldots, \lambda_{h^{(a)}}^{(a)}\right) .
$$

The integer

$$
|\lambda|:=\sum_{a=0}^{d-1}\left|\lambda^{(a)}\right|
$$

is called the size of λ. We also say that λ is a d-partition of $|\lambda|$.
From now on, we suppose that we have a given "weight system", i.e., a family of integers

$$
m:=\left(m^{(0)}, m^{(1)}, \ldots, m^{(d-1)}\right)
$$

We define the m-charged height of λ to be the integer

$$
h c_{\lambda}:=\max \left\{h c^{(a)} \mid(0 \leq a \leq d-1)\right\},
$$

where

$$
h c^{(0)}:=h^{(0)}-m^{(0)}, h c^{(1)}:=h^{(1)}-m^{(1)}, \ldots, h c^{(d-1)}:=h^{(d-1)}-m^{(d-1)}
$$

We define the m-charged height of λ to be the integer

$$
h c_{\lambda}:=\max \left\{h c^{(a)} \mid(0 \leq a \leq d-1)\right\},
$$

where

$$
h c^{(0)}:=h^{(0)}-m^{(0)}, h c^{(1)}:=h^{(1)}-m^{(1)}, \ldots, h c^{(d-1)}:=h^{(d-1)}-m^{(d-1)} .
$$

Definition (m-charged standard symbol and content)

The m-charged standard symbol of λ is the family of numbers defined by

$$
B c_{\lambda}=\left(B c_{\lambda}^{(0)}, B c_{\lambda}^{(1)}, \ldots, B c_{\lambda}^{(d-1)}\right)
$$

where, for all $a(0 \leq a \leq d-1)$, we have

$$
B c_{\lambda}^{(a)}:=\beta^{(a)}\left[h c_{\lambda}-h c^{(a)}\right] .
$$

We define the m-charged height of λ to be the integer

$$
h c_{\lambda}:=\max \left\{h c^{(a)} \mid(0 \leq a \leq d-1)\right\},
$$

where

$$
h c^{(0)}:=h^{(0)}-m^{(0)}, h c^{(1)}:=h^{(1)}-m^{(1)}, \ldots, h c^{(d-1)}:=h^{(d-1)}-m^{(d-1)} .
$$

Definition (m-charged standard symbol and content)

The m-charged standard symbol of λ is the family of numbers defined by

$$
B c_{\lambda}=\left(B c_{\lambda}^{(0)}, B c_{\lambda}^{(1)}, \ldots, B c_{\lambda}^{(d-1)}\right),
$$

where, for all $a(0 \leq a \leq d-1)$, we have

$$
B c_{\lambda}^{(a)}:=\beta^{(a)}\left[h c_{\lambda}-h c^{(a)}\right] .
$$

The m-charged content of λ is the multiset

$$
\operatorname{Contc}_{\lambda}=B c_{\lambda}^{(0)} \cup B c_{\lambda}^{(1)} \cup \ldots \cup B c_{\lambda}^{(d-1)} .
$$

Example: Let us take $d=2, \lambda=((3),(2,1))$ and $m=(2,-1)$. Then

- $\beta^{(0)}=(3)$,
- $\beta^{(1)}=(3,1)$,
- $h c^{(0)}=1-2=-1$,
- $h c^{(1)}=2-(-1)=3$

Example: Let us take $d=2, \lambda=((3),(2,1))$ and $m=(2,-1)$. Then

- $\beta^{(0)}=(3)$,
- $\beta^{(1)}=(3,1)$,
- $h c^{(0)}=1-2=-1$,
- $h c^{(1)}=2-(-1)=3=h c_{\lambda}$.

Example: Let us take $d=2, \lambda=((3),(2,1))$ and $m=(2,-1)$. Then

- $\beta^{(0)}=(3)$,
- $\beta^{(1)}=(3,1)$,
- $h c^{(0)}=1-2=-1$,
- $h c^{(1)}=2-(-1)=3=h c_{\lambda}$.

Consequently,

$$
B c_{\lambda}=\left(\begin{array}{lllll}
7 & 3 & 2 & 1 & 0 \\
3 & 1 & & &
\end{array}\right) .
$$

Example: Let us take $d=2, \lambda=((3),(2,1))$ and $m=(2,-1)$. Then

- $\beta^{(0)}=(3)$,
- $\beta^{(1)}=(3,1)$,
- $h c^{(0)}=1-2=-1$,
- $h c^{(1)}=2-(-1)=3=h c_{\lambda}$.

Consequently,

$$
B c_{\lambda}=\left(\begin{array}{lllll}
7 & 3 & 2 & 1 & 0 \\
3 & 1 & & &
\end{array}\right) .
$$

We have Contc $_{\lambda}=\{0,1,1,2,3,3,7\}$.

The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_{d}.

The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_{d}.
- $\left.G(d, 1, r) \simeq \mu_{d}\right\} \mathfrak{S}_{r}$.

The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_{d}.
- $G(d, 1, r) \simeq \mu_{d} \backslash \mathfrak{S}_{r}$.
- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.

The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_{d}.
- $G(d, 1, r) \simeq \mu_{d} \ \mathfrak{S}_{r}$.
- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.
- The field of definition of $G(d, 1, r)$ is $\mathbb{Q}\left(\zeta_{d}\right)$.

The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_{d}.
- $G(d, 1, r) \simeq \mu_{d} \ \mathfrak{S}_{r}$.
- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.
- The field of definition of $G(d, 1, r)$ is $\mathbb{Q}\left(\zeta_{d}\right)$.
- $G(1,1, r) \simeq A_{r-1}$ for $r \geq 2$,

The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_{d}.
- $G(d, 1, r) \simeq \mu_{d} \ \mathfrak{S}_{r}$.
- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.
- The field of definition of $G(d, 1, r)$ is $\mathbb{Q}\left(\zeta_{d}\right)$.
- $G(1,1, r) \simeq A_{r-1}$ for $r \geq 2$,
- $G(2,1, r) \simeq B_{r}$ for $r \geq 2$

The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_{d}.
- $G(d, 1, r) \simeq \mu_{d} \ \mathfrak{S}_{r}$.
- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.
- The field of definition of $G(d, 1, r)$ is $\mathbb{Q}\left(\zeta_{d}\right)$.
- $G(1,1, r) \simeq A_{r-1}$ for $r \geq 2$,
- $G(2,1, r) \simeq B_{r}$ for $r \geq 2 \quad\left(G(2,1,1) \simeq C_{2}\right)$.

Ariki-Koike algebras

The "generic" Ariki-Koike algebra associated to $G(d, 1, r)$ is the algebra $\mathcal{H}_{d, r}$ generated over the Laurent polynomial ring in $d+1$ indeterminates

$$
\mathbb{Z}\left[u_{0}, u_{0}^{-1}, u_{1}, u_{1}^{-1}, \ldots, u_{d-1}, u_{d-1}^{-1}, x, x^{-1}\right]
$$

by the elements $\mathbf{s}, \mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{r-1}$ satisfying the relations

- $\mathbf{s t}_{1} \mathbf{s t}_{1}=\mathbf{t}_{1} \mathbf{s} \mathbf{t}_{1} \mathbf{s}$,
- $\mathbf{s t}_{j}=\mathbf{t}_{j} \mathbf{s}$, for all $j=2, \ldots, r-1$,
- $\mathbf{t}_{j-1} \mathbf{t}_{j} \mathbf{t}_{j-1}=\mathbf{t}_{j} \mathbf{t}_{j-1} \mathbf{t}_{j}$, for all $j=2, \ldots, r-1$,
- $\mathbf{t}_{i} \mathbf{t}_{j}=\mathbf{t}_{j} \mathbf{t}_{i}$, for all $1 \leq i, j \leq r-1$ with $|i-j|>1$,
- $\left(\mathbf{s}-u_{0}\right)\left(\mathbf{s}-u_{1}\right) \ldots\left(\mathbf{s}-u_{d-1}\right)=0$,
- $\left(\mathbf{t}_{j}-x\right)\left(\mathbf{t}_{j}+1\right)=0$, for all $j=1, \ldots, r-1$.

The Schur elements of $\mathcal{H}_{d, r}$ have been calculated independently by

The Schur elements of $\mathcal{H}_{d, r}$ have been calculated independently by

- Geck, lancu, Malle (2000),

The Schur elements of $\mathcal{H}_{d, r}$ have been calculated independently by

- Geck, lancu, Malle (2000),
- Mathas (2004).

The Schur elements of $\mathcal{H}_{d, r}$ have been calculated independently by

- Geck, lancu, Malle (2000),
- Mathas (2004).

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{d, r}$.

The Schur elements of $\mathcal{H}_{d, r}$ have been calculated independently by

- Geck, lancu, Malle (2000),
- Mathas (2004).

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{d, r}$.

Proposition (C.)

The essential hyperplanes for $G(d, 1, r)$ are given by:

The Schur elements of $\mathcal{H}_{d, r}$ have been calculated independently by

- Geck, lancu, Malle (2000),
- Mathas (2004).

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{d, r}$.

Proposition (C.)

The essential hyperplanes for $G(d, 1, r)$ are given by:

- $N=0$.

The Schur elements of $\mathcal{H}_{d, r}$ have been calculated independently by

- Geck, lancu, Malle (2000),
- Mathas (2004).

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{d, r}$.

Proposition (C.)

The essential hyperplanes for $G(d, 1, r)$ are given by:

- $N=0$.
- $k N+M_{s}-M_{t}=0$ for $-r<k<r$ and $0 \leq s<t<d$ such that

The Schur elements of $\mathcal{H}_{d, r}$ have been calculated independently by

- Geck, lancu, Malle (2000),
- Mathas (2004).

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{d, r}$.

Proposition (C.)

The essential hyperplanes for $G(d, 1, r)$ are given by:

- $N=0$.
- $k N+M_{s}-M_{t}=0$ for $-r<k<r$ and $0 \leq s<t<d$ such that

$$
\zeta_{d}^{s}-\zeta_{d}^{t} \text { is not a unit in } \mathbb{Z}\left[\zeta_{d}\right] .
$$

Rouquier blocks of the "cyclotomic" Ariki-Koike algebras

Rouquier blocks of the "cyclotomic" Ariki-Koike algebras

Proposition

The Rouquier blocks associated with no essential hyperplane are trivial.

Rouquier blocks of the "cyclotomic" Ariki-Koike algebras

Proposition

The Rouquier blocks associated with no essential hyperplane are trivial.

In order to obtain a description for the Rouquier blocks associated with the essential hyperplanes of $G(d, 1, r)$, we have used the algorithm for the blocks of the Ariki-Koike algebra over a field given by Lyle and Mathas (2007).

Rouquier blocks of the "cyclotomic" Ariki-Koike algebras

Proposition

The Rouquier blocks associated with no essential hyperplane are trivial.

In order to obtain a description for the Rouquier blocks associated with the essential hyperplanes of $G(d, 1, r)$, we have used the algorithm for the blocks of the Ariki-Koike algebra over a field given by Lyle and Mathas (2007).

Proposition (C.)

Let λ, μ be two d-partitions of r. The characters χ_{λ} and χ_{μ} are in the same Rouquier block associated with the essential hyperplane $N=0$ if and only if

$$
\left|\lambda^{(\mathrm{a})}\right|=\left|\mu^{(\mathrm{a})}\right| \text { for all } a=0,1, \ldots, d-1 .
$$

Let $H: k N+M_{s}-M_{t}=0$ be an essential hyperplane for $G(d, 1, r)$ and let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization such that $k n+m_{s}-m_{t}=0$ and the integers n and $m_{j}(0 \leq j<d)$ belong to no other essential hyperplane for $G(d, 1, r)$.

Let $H: k N+M_{s}-M_{t}=0$ be an essential hyperplane for $G(d, 1, r)$ and let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization such that $k n+m_{s}-m_{t}=0$ and the integers n and $m_{j}(0 \leq j<d)$ belong to no other essential hyperplane for $G(d, 1, r)$. Without loss of generality, we shall assume that $n=1$.

Let $H: k N+M_{s}-M_{t}=0$ be an essential hyperplane for $G(d, 1, r)$ and let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization such that $k n+m_{s}-m_{t}=0$ and the integers n and $m_{j}(0 \leq j<d)$ belong to no other essential hyperplane for $G(d, 1, r)$. Without loss of generality, we shall assume that $n=1$.

Theorem (Broué-Kim)

Let λ, μ be two d-partitions of r. If the irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$, then $\operatorname{Contc}_{\lambda}=\operatorname{Contc}_{\mu}$ with respect to the weight system $\left(m_{0}, m_{1}, \ldots, m_{d-1}\right)$.

Let $H: k N+M_{s}-M_{t}=0$ be an essential hyperplane for $G(d, 1, r)$ and let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{d}^{j} q^{m_{j}},(0 \leq j<d), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization such that $k n+m_{s}-m_{t}=0$ and the integers n and $m_{j}(0 \leq j<d)$ belong to no other essential hyperplane for $G(d, 1, r)$. Without loss of generality, we shall assume that $n=1$.

Theorem (Broué-Kim)

Let λ, μ be two d-partitions of r. If the irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$, then Contc ${ }_{\lambda}=\operatorname{Contc}_{\mu}$ with respect to the weight system ($m_{0}, m_{1}, \ldots, m_{d-1}$). The converse is true when d is a power of a prime number.

Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$ if and only if:

Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$ if and only if:
(1) We have $\lambda^{(a)}=\mu^{(a)}$ for all $a \notin\{s, t\}$.

Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$ if and only if:
(1) We have $\lambda^{(a)}=\mu^{(a)}$ for all $a \notin\{s, t\}$.
(2) If $\lambda^{\text {st }}:=\left(\lambda^{(s)}, \lambda^{(t)}\right)$ and $\mu^{\text {st }}:=\left(\mu^{(s)}, \mu^{(t)}\right)$, then $\operatorname{Contc}_{\lambda^{s t}}=\operatorname{Contc}_{\mu^{s t}}$ with respect to the weight system $\left(m_{s}, m_{t}\right)$.

Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$ if and only if:
(1) We have $\lambda^{(a)}=\mu^{(a)}$ for all $a \notin\{s, t\}$.
(2) If $\lambda^{\text {st }}:=\left(\lambda^{(s)}, \lambda^{(t)}\right)$ and $\mu^{\text {st }}:=\left(\mu^{(s)}, \mu^{(t)}\right)$, then Contc $\lambda_{s^{s t}}=\operatorname{Contc}_{\mu^{s t}}$ with respect to the weight system $\left(m_{s}, m_{t}\right)$.

Let $\lambda^{\text {st }}$ and $\mu^{\text {st }}$ be as above and set $l:=\left|\lambda^{s t}\right|=\left|\mu^{s t}\right|$.

Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$ if and only if:
(1) We have $\lambda^{(a)}=\mu^{(a)}$ for all $a \notin\{s, t\}$.
(2) If $\lambda^{\text {st }}:=\left(\lambda^{(s)}, \lambda^{(t)}\right)$ and $\mu^{\text {st }}:=\left(\mu^{(s)}, \mu^{(t)}\right)$, then Contc $_{\lambda^{s t}}=\operatorname{Contc}_{\mu^{s t}}$ with respect to the weight system $\left(m_{s}, m_{t}\right)$.

Let $\lambda^{s t}$ and $\mu^{s t}$ be as above and set $I:=\left|\lambda^{s t}\right|=\left|\mu^{s t}\right|$. Let us consider the Ariki-Koike algebra $\mathcal{H}_{2, I}$ of $G(2,1, I)$ over the Laurent polynomial ring

$$
\mathbb{Z}\left[U_{0}, U_{0}^{-1}, U_{1}, U_{1}^{-1}, X, X^{-1}\right]
$$

Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$ if and only if:
(1) We have $\lambda^{(a)}=\mu^{(a)}$ for all $a \notin\{s, t\}$.
(2) If $\lambda^{\text {st }}:=\left(\lambda^{(s)}, \lambda^{(t)}\right)$ and $\mu^{\text {st }}:=\left(\mu^{(s)}, \mu^{(t)}\right)$, then Contc $_{\lambda^{s t}}=\operatorname{Contc}_{\mu^{s t}}$ with respect to the weight system $\left(m_{s}, m_{t}\right)$.

Let $\lambda^{s t}$ and $\mu^{s t}$ be as above and set $I:=\left|\lambda^{s t}\right|=\left|\mu^{s t}\right|$. Let us consider the Ariki-Koike algebra $\mathcal{H}_{2, I}$ of $G(2,1, I)$ over the Laurent polynomial ring

$$
\mathbb{Z}\left[U_{0}, U_{0}^{-1}, U_{1}, U_{1}^{-1}, X, X^{-1}\right]
$$

and the cyclotomic specialization

$$
\vartheta: U_{0} \mapsto q^{m_{s}}, U_{1} \mapsto-q^{m_{t}}, X \mapsto q^{n} .
$$

Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $\left(\chi_{\lambda}\right)_{\phi}$ and $\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{d, r}\right)_{\phi}$ if and only if:
(1) We have $\lambda^{(a)}=\mu^{(a)}$ for all a $\notin\{s, t\}$.
(2) If $\lambda^{\text {st }}:=\left(\lambda^{(s)}, \lambda^{(t)}\right)$ and $\mu^{\text {st }}:=\left(\mu^{(s)}, \mu^{(t)}\right)$, then Contc $\lambda_{s^{s t}}=\operatorname{Contc}_{\mu^{s t}}$ with respect to the weight system $\left(m_{s}, m_{t}\right)$.

Let $\lambda^{s t}$ and $\mu^{s t}$ be as above and set $I:=\left|\lambda^{s t}\right|=\left|\mu^{s t}\right|$. Let us consider the Ariki-Koike algebra $\mathcal{H}_{2, I}$ of $G(2,1, I)$ over the Laurent polynomial ring

$$
\mathbb{Z}\left[U_{0}, U_{0}^{-1}, U_{1}, U_{1}^{-1}, X, X^{-1}\right]
$$

and the cyclotomic specialization

$$
\vartheta: U_{0} \mapsto q^{m_{s}}, U_{1} \mapsto-q^{m_{t}}, X \mapsto q^{n} .
$$

By the theorem of Broué-Kim, we have Contc $\lambda^{s t}=$ Contc $_{\mu^{s t}}$ with respect to the weight system $\left(m_{s}, m_{t}\right)$ if and only if the corresponding characters of $G(2,1, I)$ belong to the same Rouquier block of $\left(\mathcal{H}_{2,1}\right)_{\vartheta}$.

Example: Let $W:=G(3,1,2)$.

Example: Let $W:=G(3,1,2)$. The irreducible characters of W are parametrized by the 3 -partitions of 2 . These are:

Example: Let $W:=G(3,1,2)$. The irreducible characters of W are parametrized by the 3 -partitions of 2 . These are:

$$
\begin{array}{lll}
\lambda_{(2), 0}=((2), \emptyset, \emptyset), & \lambda_{(2), 1}=(\emptyset,(2), \emptyset), & \lambda_{(2), 2}=(\emptyset, \emptyset,(2)), \\
\lambda_{(1,1), 0}=((1,1), \emptyset, \emptyset), & \lambda_{(1,1), 1}=(\emptyset,(1,1), \emptyset), & \lambda_{(1,1), 2}=(\emptyset, \emptyset,(1,1)), \\
\lambda_{\emptyset, 0}=(\emptyset,(1),(1)), & \lambda_{\emptyset, 1}=((1), \emptyset,(1)), & \lambda_{\emptyset, 2}=((1),(1), \emptyset) .
\end{array}
$$

Example: Let $W:=G(3,1,2)$. The irreducible characters of W are parametrized by the 3 -partitions of 2 . These are:

$$
\begin{array}{lll}
\lambda_{(2), 0}=((2), \emptyset, \emptyset), & \lambda_{(2), 1}=(\emptyset,(2), \emptyset), & \lambda_{(2), 2}=(\emptyset, \emptyset,(2)), \\
\lambda_{(1,1), 0}=((1,1), \emptyset, \emptyset), & \lambda_{(1,1), 1}=(\emptyset,(1,1), \emptyset), & \lambda_{(1,1), 2}=(\emptyset, \emptyset,(1,1)), \\
\lambda_{\emptyset, 0}=(\emptyset,(1),(1)), & \lambda_{\emptyset, 1}=((1), \emptyset,(1)), & \lambda_{\emptyset, 2}=((1),(1), \emptyset) .
\end{array}
$$

The generic Ariki-Koike algebra associated to W is the algebra $\mathcal{H}_{3,2}$ generated over the Laurent polynomial ring in 4 indeterminates

$$
\mathbb{Z}\left[u_{0}, u_{0}^{-1}, u_{1}, u_{1}^{-1}, u_{2}, u_{2}^{-1}, x, x^{-1}\right]
$$

by the elements \mathbf{s} and \mathbf{t} satisfying the relations

- $\boldsymbol{s t s t}=\mathbf{t s t s}$,
- $\left(\mathbf{s}-u_{0}\right)\left(\mathbf{s}-u_{1}\right)\left(\mathbf{s}-u_{2}\right)=(\mathbf{t}-x)(\mathbf{t}+1)=0$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.
- $k N+M_{0}-M_{1}=0$ for $k \in\{-1,0,1\}$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.
- $k N+M_{0}-M_{1}=0$ for $k \in\{-1,0,1\}$.
- $k N+M_{0}-M_{2}=0$ for $k \in\{-1,0,1\}$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.
- $k N+M_{0}-M_{1}=0$ for $k \in\{-1,0,1\}$.
- $k N+M_{0}-M_{2}=0$ for $k \in\{-1,0,1\}$.
- $K N+M_{1}-M_{2}=0$ for $k \in\{-1,0,1\}$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.
- $k N+M_{0}-M_{1}=0$ for $k \in\{-1,0,1\}$.
- $k N+M_{0}-M_{2}=0$ for $k \in\{-1,0,1\}$.
- $K N+M_{1}-M_{2}=0$ for $k \in\{-1,0,1\}$.

Let us take $m_{0}:=0, m_{1}:=0, m_{2}:=5$ and $n:=1$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2), \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.
- $k N+M_{0}-M_{1}=0$ for $k \in\{-1,0,1\}$.
- $k N+M_{0}-M_{2}=0$ for $k \in\{-1,0,1\}$.
- $K N+M_{1}-M_{2}=0$ for $k \in\{-1,0,1\}$.

Let us take $m_{0}:=0, m_{1}:=0, m_{2}:=5$ and $n:=1$. These integers belong only to the essential hyperplane $M_{0}-M_{1}=0$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2) \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.
- $k N+M_{0}-M_{1}=0$ for $k \in\{-1,0,1\}$.
- $k N+M_{0}-M_{2}=0$ for $k \in\{-1,0,1\}$.
- $K N+M_{1}-M_{2}=0$ for $k \in\{-1,0,1\}$.

Let us take $m_{0}:=0, m_{1}:=0, m_{2}:=5$ and $n:=1$. These integers belong only to the essential hyperplane $M_{0}-M_{1}=0$. Following our main result, two irreducible characters $\left(\chi_{\lambda}\right)_{\phi},\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{2,3}\right)_{\phi}$ if and only if:

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2) \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.
- $k N+M_{0}-M_{1}=0$ for $k \in\{-1,0,1\}$.
- $k N+M_{0}-M_{2}=0$ for $k \in\{-1,0,1\}$.
- $K N+M_{1}-M_{2}=0$ for $k \in\{-1,0,1\}$.

Let us take $m_{0}:=0, m_{1}:=0, m_{2}:=5$ and $n:=1$. These integers belong only to the essential hyperplane $M_{0}-M_{1}=0$. Following our main result, two irreducible characters $\left(\chi_{\lambda}\right)_{\phi},\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{2,3}\right)_{\phi}$ if and only if:
(1) We have $\lambda^{(2)}=\mu^{(2)}$.

Let

$$
\phi:\left\{\begin{array}{l}
u_{j} \mapsto \zeta_{3}^{j} q^{m_{j}},(0 \leq j \leq 2) \\
x \mapsto q^{n}
\end{array}\right.
$$

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N=0$.
- $k N+M_{0}-M_{1}=0$ for $k \in\{-1,0,1\}$.
- $k N+M_{0}-M_{2}=0$ for $k \in\{-1,0,1\}$.
- $K N+M_{1}-M_{2}=0$ for $k \in\{-1,0,1\}$.

Let us take $m_{0}:=0, m_{1}:=0, m_{2}:=5$ and $n:=1$. These integers belong only to the essential hyperplane $M_{0}-M_{1}=0$. Following our main result, two irreducible characters $\left(\chi_{\lambda}\right)_{\phi},\left(\chi_{\mu}\right)_{\phi}$ are in the same Rouquier block of $\left(\mathcal{H}_{2,3}\right)_{\phi}$ if and only if:
(1) We have $\lambda^{(2)}=\mu^{(2)}$.
(2) If $\lambda^{01}:=\left(\lambda^{(0)}, \lambda^{(1)}\right)$ and $\mu^{01}:=\left(\mu^{(0)}, \mu^{(1)}\right)$, then Contc $\lambda_{\lambda^{01}}=$ Contc $_{\mu^{01}}$ with respect to the weight system $(0,0)$.

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons.

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

$$
B_{\lambda_{(2), 0}}=\binom{2}{0},
$$

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

$$
B_{\lambda_{(2), 0}}=\binom{2}{0}, B_{\lambda_{(2), 1}}=\binom{0}{2} .
$$

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

$$
\begin{aligned}
& B_{\lambda_{(2), 0}}=\binom{2}{0}, B_{\lambda_{(2), 1}}=\binom{0}{2} . \\
& B_{\lambda_{(1,1), 0}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right),
\end{aligned}
$$

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

$$
\begin{gathered}
B_{\lambda_{(2), 0}}=\binom{2}{0}, B_{\lambda_{(2), 1}}=\binom{0}{2} . \\
B_{\lambda_{(1,1), 0}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right), B_{\lambda_{(1,1), 1}}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) .
\end{gathered}
$$

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

$$
\begin{gathered}
B_{\lambda_{(2), 0}}=\binom{2}{0}, B_{\lambda_{(2), 1}}=\binom{0}{2} . \\
B_{\lambda_{(1,1), 0}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right), B_{\lambda_{(1,1), 1}}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) . \\
B_{\lambda_{\emptyset, 0}}=\binom{0}{1},
\end{gathered}
$$

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

$$
\begin{gathered}
B_{\lambda_{(2), 0}}=\binom{2}{0}, B_{\lambda_{(2), 1}}=\binom{0}{2} . \\
B_{\lambda_{(1,1), 0}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right), B_{\lambda_{(1,1), 1}}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) . \\
B_{\lambda_{\emptyset, 0}}=\binom{0}{1}, B_{\lambda_{\emptyset, 1}}=\binom{1}{0} .
\end{gathered}
$$

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

$$
\begin{gathered}
B_{\lambda_{(2), 0}}=\binom{2}{0}, B_{\lambda_{(2), 1}}=\binom{0}{2} . \\
B_{\lambda_{(1,1), 0}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right), B_{\lambda_{(1,1), 1}}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) . \\
B_{\lambda_{\emptyset, 0}}=\binom{0}{1}, B_{\lambda_{\emptyset, 1}}=\binom{1}{0} .
\end{gathered}
$$

The Rouquier blocks of $\left(\mathcal{H}_{3,2}\right)_{\phi}$ are:

Consequently, the characters corresponding to the partitions $\lambda_{(2), 2}, \lambda_{(1,1), 2}$ and $\lambda_{\emptyset, 2}$ are singletons. Moreover, we have

$$
\begin{gathered}
B_{\lambda_{(2), 0}}=\binom{2}{0}, B_{\lambda_{(2), 1}}=\binom{0}{2} . \\
B_{\lambda_{(1,1), 0}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right), B_{\lambda_{(1,1), 1}}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right) . \\
B_{\lambda_{\emptyset, 0}}=\binom{0}{1}, B_{\lambda_{\emptyset, 1}}=\binom{1}{0} .
\end{gathered}
$$

The Rouquier blocks of $\left(\mathcal{H}_{3,2}\right)_{\phi}$ are:

$$
\left\{\lambda_{(2), 0}, \lambda_{(2), 1}\right\},\left\{\lambda_{(2), 2}\right\},\left\{\lambda_{(1,1), 0}, \lambda_{(1,1), 1}\right\},\left\{\lambda_{(1,1), 2}\right\},\left\{\lambda_{\emptyset, 0}, \lambda_{\emptyset, 1}\right\},\left\{\lambda_{\emptyset, 2}\right\} .
$$

The group $G(d e, e, r)$

The group $G(d e, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in $\mu_{d e}$ and product of the non-zero entries in μ_{d}.

The group $G(d e, e, r)$

The group $G(d e, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in $\mu_{d e}$ and product of the non-zero entries in μ_{d}.

- Thanks to a result by Ariki (1995), any cyclotomic Hecke algebra of $G(d e, e, r), r>2$, can be viewed as a subalgebra of a cyclotomic Hecke algebra associated to $G(d e, 1, r)$. Then Clifford Theory allows us to obtain the Rouquier blocks of the former from the Rouquier blocks of the latter.

The group $G(d e, e, r)$

The group $G(d e, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in $\mu_{d e}$ and product of the non-zero entries in μ_{d}.

- Thanks to a result by Ariki (1995), any cyclotomic Hecke algebra of $G(d e, e, r), r>2$, can be viewed as a subalgebra of a cyclotomic Hecke algebra associated to $G(d e, 1, r)$. Then Clifford Theory allows us to obtain the Rouquier blocks of the former from the Rouquier blocks of the latter.
- The same holds in the case where $r=2$ and e is odd.

The group $G(d e, e, r)$

The group $G(d e, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in $\mu_{d e}$ and product of the non-zero entries in μ_{d}.

- Thanks to a result by Ariki (1995), any cyclotomic Hecke algebra of $G(d e, e, r), r>2$, can be viewed as a subalgebra of a cyclotomic Hecke algebra associated to $G(d e, 1, r)$. Then Clifford Theory allows us to obtain the Rouquier blocks of the former from the Rouquier blocks of the latter.
- The same holds in the case where $r=2$ and e is odd.
- In the case where $r=2$ and e is even, explicit calculations had to be made (and there is no combinatorial description of the Rouquier blocks).

