Families of characters of the imprimitive complex reflection groups

Maria Chlouveraki

EPFL

Expansion of Combinatorial Representation Theory

RIMS Workshop 2008
A finite reflection group on K is a finite subgroup of $\text{GL}_K(V)$ (V a finite-dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.

A finite reflection group on Q is called a Weyl group.

A finite reflection group on R is called a (finite) Coxeter group.

A finite reflection group on C is called a complex reflection group.
Complex reflection groups

A finite reflection group on K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.
A finite reflection group on K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.

- A finite reflection group on \mathbb{Q} is called a Weyl group.
A finite reflection group on K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.

- A finite reflection group on \mathbb{Q} is called a Weyl group.
- A finite reflection group on \mathbb{R} is called a (finite) Coxeter group.
Complex reflection groups

A finite reflection group on K is a finite subgroup of $GL_K(V)$ (V a finite dimensional K-vector space) generated by pseudo-reflections, i.e., linear maps whose vector space of fixed points is a hyperplane.

- A finite reflection group on \mathbb{Q} is called a Weyl group.
- A finite reflection group on \mathbb{R} is called a (finite) Coxeter group.
- A finite reflection group on \mathbb{C} is called a complex reflection group.
The complex reflection groups were classified by Shephard and Todd in 1954. If \(W \) is an (irreducible) complex reflection group, then
The complex reflection groups were classified by Shephard and Todd in 1954. If W is an (irreducible) complex reflection group, then

- either there exist positive integers d, e, r such that W is isomorphic to $G(de, e, r)$, where $G(de, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in μ_{de} and product of the non-zero entries in μ_d,
The complex reflection groups were classified by Shephard and Todd in 1954. If W is an (irreducible) complex reflection group, then

- either there exist positive integers d, e, r such that W is isomorphic to $G(de, e, r)$, where $G(de, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in μ_{de} and product of the non-zero entries in μ_d,

- or W is isomorphic to an exceptional group G_n ($n = 4, \ldots, 37$).
Every complex reflection group W has a Coxeter-like presentation:

\[G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle, \]

\[G_4 = \langle s, t \mid sts = tst, s^3 = t^3 = 1 \rangle, \]

and a field of realization K:

\[K_{G_2} = \mathbb{Q}, \]

\[K_{G_4} = \mathbb{Q}(\zeta_3). \]

We choose a set of indeterminates $u = (u_s, j)$, $0 \leq j \leq o(s) - 1$, where s runs over the set of generators of W and $o(s)$ denotes the order of s (if s and t are conjugate in W, then $u_s, j = u_t, j$ for all j).

The associated generic Hecke algebra $H(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[u, u^{-1}]$ and has a presentation of the form:

\[H(G_2) = \langle S, T \mid STSTST = TSTSTS, (S - u_0)(S - u_1) = 0, (T - w_0)(T - w_1) = 0 \rangle, \]

\[H(G_4) = \langle S, T \mid STS = TST, (S - u_0)(S - u_1)(S - u_2) = 0, (T - u_0)(T - u_1)(T - u_2) = 0 \rangle. \]
Every complex reflection group W has a Coxeter-like presentation:

$G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle$,

$G_4 = \langle s, t \mid sts = tst, s^3 = t^3 = 1 \rangle$.

We choose a set of indeterminates $u = (u_s, j)$, $0 \leq j \leq o(s) - 1$, where s runs over the set of generators of W and $o(s)$ denotes the order of s (if s and t are conjugate in W, then $u_s, j = u_t, j$ for all j).

The associated generic Hecke algebra $H(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[u, u^{-1}]$ and has a presentation of the form:

$H(G_2) = \langle S, T \mid STSTST = TSTSTS, (S - u_0)(S - u_1) = 0 \rangle$,

$H(G_4) = \langle S, T \mid STS = TST, (S - u_0)(S - u_1)(S - u_2) = 0 \rangle$.

Maria Chlouveraki (EPFL)

Families of characters of the imprimitive c.r.g

November 29, 2008
Generic Hecke algebras

- Every complex reflection group W has a Coxeter-like presentation:

 $G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle,

 $G_4 = \langle s, t \mid st = ts, s^3 = t^3 = 1 \rangle,$
Every complex reflection group W has an Coxeter-like presentation:

$G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle,$

$G_4 = \langle s, t \mid sts = tst, s^3 = t^3 = 1 \rangle,$

and a field of realization K:

$K_{G_2} = \mathbb{Q},$

$K_{G_4} = \mathbb{Q}(\zeta_3).$
Generic Hecke algebras

- Every complex reflection group W has a Coxeter-like presentation:

 \[G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle, \]
 \[G_4 = \langle s, t \mid sts = tst, s^3 = t^3 = 1 \rangle, \]

 and a field of realization K:

 \[K_{G_2} = \mathbb{Q}, \quad K_{G_4} = \mathbb{Q}(\zeta_3). \]
Every complex reflection group W has a Coxeter-like presentation:

\[G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle, \]
\[G_4 = \langle s, t \mid sts = tst, s^3 = t^3 = 1 \rangle, \]

and a field of realization K:

\[K_{G_2} = \mathbb{Q}, \quad K_{G_4} = \mathbb{Q}(\zeta_3). \]

We choose a set of indeterminates $u = (u_{s,j})_{s, 0 \leq j \leq o(s) - 1}$, where s runs over the set of generators of W and $o(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s,j} = u_{t,j}$ for all j).
Generic Hecke algebras

- Every complex reflection group W has a Coxeter-like presentation:

 $$G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle,$$

 $$G_4 = \langle s, t \mid sts = tst, s^3 = t^3 = 1 \rangle,$$

 and a field of realization K:

 $$K_{G_2} = \mathbb{Q}, \quad K_{G_4} = \mathbb{Q}(\zeta_3).$$

- We choose a set of indeterminates $u = (u_{s,j})_{s, 0 \leq j \leq o(s) - 1}$, where s runs over the set of generators of W and $o(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s,j} = u_{t,j}$ for all j).

- The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[u, u^{-1}]$ and has a presentation of the form:
Generic Hecke algebras

- Every complex reflection group W has a **Coxeter-like presentation**:
 \[G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle, \]
 \[G_4 = \langle s, t \mid stst = tst, s^3 = t^3 = 1 \rangle, \]
 and a **field of realization** K:
 \[K_{G_2} = \mathbb{Q}, \quad K_{G_4} = \mathbb{Q}(\zeta_3). \]

- We choose a set of indeterminates $u = (u_{s,j})_{s,j,0 \leq j \leq o(s) - 1}$, where s runs over the set of generators of W and $o(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s,j} = u_{t,j}$ for all j).

- The associated **generic Hecke algebra** $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[u, u^{-1}]$ and has a presentation of the form:
 \[\mathcal{H}(G_2) = \langle S, T \mid STSTST = TSTSTS, (S - u_0)(S - u_1) = 0, \]
 \[(T - w_0)(T - w_1) = 0 \rangle, \]
Generic Hecke algebras

- Every complex reflection group W has a Coxeter-like presentation:

 $G_2 = \langle s, t \mid ststst = tststs, s^2 = t^2 = 1 \rangle,$

 $G_4 = \langle s, t \mid sts = tst, s^3 = t^3 = 1 \rangle,$

 and a field of realization K:

 $K_{G_2} = \mathbb{Q}, \ K_{G_4} = \mathbb{Q}(\zeta_3).$

- We choose a set of indeterminates $u = (u_{s,j})_{s, 0 \leq j \leq o(s) - 1},$ where s runs over the set of generators of W and $o(s)$ denotes the order of s (if s and t are conjugate in $W,$ then $u_{s,j} = u_{t,j}$ for all j).

- The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[u, u^{-1}]$ and has a presentation of the form:

 $\mathcal{H}(G_2) = \langle S, T \mid STSTST = TSTSTS, (S - u_0)(S - u_1) = 0,$

 $(T - w_0)(T - w_1) = 0 \rangle,$

 $\mathcal{H}(G_4) = \langle S, T \mid STS = TST, (S - u_0)(S - u_1)(S - u_2) = 0,$

 $(T - u_0)(T - u_1)(T - u_2) = 0 \rangle.$
Remark: The specialization $u_{s,j} \mapsto \zeta_{\omega(s)}^j$ sends $\mathcal{H}(W)$ to $\mathbb{Z}_K W$.
Remark: The specialization $u_{s,j} \mapsto \zeta_{o(s)}^j$ sends $\mathcal{H}(W)$ to $\mathbb{Z}_K W$.

Theorem (Malle)

Let $\mathbf{v} = (v_{s,j})_{s,j}$ be a set of indeterminates such that, for all s,j, we have

$$v_{s,j} |_{\mu(K)} := \zeta_{o(s)}^{-j} u_{s,j},$$

where $\mu(K)$ is the group of all the roots of unity in K. Then the $K(\mathbf{v})$-algebra $K(\mathbf{v})\mathcal{H}(W)$ is split semisimple.
Remark: The specialization $u_{s,j} \mapsto \zeta_{o(s)}^j$ sends $\mathcal{H}(W)$ to $\mathbb{Z}_K W$.

Theorem (Malle)

Let $\mathbf{v} = (v_{s,j})_{s,j}$ be a set of indeterminates such that, for all s, j, we have

$$v_{s,j} |_{\mu(K)} := \zeta_{o(s)}^j u_{s,j},$$

where $\mu(K)$ is the group of all the roots of unity in K. Then the $K(\mathbf{v})$-algebra $K(\mathbf{v}) \mathcal{H}(W)$ is split semisimple.

By “Tits’ deformation theorem”, the specialization $v_{s,j} \mapsto 1$ induces a bijection

$$\text{Irr}(K(\mathbf{v}) \mathcal{H}(W)) \leftrightarrow \text{Irr}(W)$$

$$\chi_{\mathbf{v}} \mapsto \chi$$
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$
t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_\chi} \chi_v,$$

where s_χ is the Schur element associated to $\chi_v \in \text{Irr}(K(v)\mathcal{H}(W))$.

Theorem (C.)
Let $\chi \in \text{Irr}(W)$. The Schur element s_χ is an element of $\mathbb{Z}_{K[v, v^{-1}]}$ whose irreducible factors (in $K[v, v^{-1}]$) are of the form: $\Psi(M)$ where Ψ is a K-cyclotomic polynomial in one variable, M is a primitive monomial of degree 0, i.e., if $M = \prod s_j v^{a_j}$, then $\gcd(a_j, s_j) = 1$ and $\sum s_j v^{a_j} = 0$.

Maria Chlouveraki (EPFL)

Families of characters of the imprimitive c.r.g.

November 29, 2008 6 / 27
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_{\chi}} \chi_v,$$

where s_{χ} is the Schur element associated to $\chi_v \in \text{Irr}(K(v)\mathcal{H}(W))$.

Theorem (C.)

Let $\chi \in \text{Irr}(W)$. The Schur element s_{χ} is an element of $\mathbb{Z}_K[v, v^{-1}]$ whose irreducible factors (in $K[v, v^{-1}]$) are of the form: $\Psi(M)$.
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form \(t \). We have that

\[
t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_{\chi}} \chi_v,
\]

where \(s_{\chi} \) is the Schur element associated to \(\chi_v \in \text{Irr}(K(v) \mathcal{H}(W)) \).

Theorem (C.)

Let \(\chi \in \text{Irr}(W) \). The Schur element \(s_{\chi} \) is an element of \(\mathbb{Z}_K[v, v^{-1}] \) whose irreducible factors (in \(K[v, v^{-1}] \)) are of the form: \(\Psi(M) \)

where
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_\chi} \chi_v,$$

where s_χ is the Schur element associated to $\chi_v \in \text{Irr}(K(v)\mathcal{H}(W))$.

Theorem (C.)

Let $\chi \in \text{Irr}(W)$. The Schur element s_χ is an element of $\mathbb{Z}_K[v, v^{-1}]$ whose irreducible factors (in $K[v, v^{-1}]$) are of the form: $\Psi(M)$

where

- Ψ is a K-cyclotomic polynomial in one variable,
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form \(t \). We have that

\[
 t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_{\chi}} \chi_{\nu},
\]

where \(s_{\chi} \) is the Schur element associated to \(\chi_{\nu} \in \text{Irr}(K(\nu) \mathcal{H}(W)) \).

Theorem (C.)

Let \(\chi \in \text{Irr}(W) \). The Schur element \(s_{\chi} \) is an element of \(\mathbb{Z}_K[\nu, \nu^{-1}] \) whose irreducible factors (in \(K[\nu, \nu^{-1}] \)) are of the form: \(\Psi(M) \)

where

- \(\Psi \) is a \(K \)-cyclotomic polynomial in one variable,
- \(M \) is a primitive monomial of degree 0,
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_{\chi}} \chi_v,$$

where s_{χ} is the Schur element associated to $\chi_v \in \text{Irr}(K(v)H(W))$.

Theorem (C.)

Let $\chi \in \text{Irr}(W)$. The Schur element s_{χ} is an element of $\mathbb{Z}_K[v, v^{-1}]$ whose irreducible factors (in $K[v, v^{-1}]$) are of the form: $\Psi(M)$ where

- Ψ is a K-cyclotomic polynomial in one variable,
- M is a primitive monomial of degree 0, i.e., if $M = \prod_{s,j} v^{a_{s,j}}$, then $\gcd(a_{s,j}) = 1$ and $\sum_{s,j} a_{s,j} = 0$.
Schur elements of G_2: $X_0^2 := u_0$, $X_1^2 := -u_1$, $Y_0^2 := w_0$, $Y_1^2 := -w_1$.

\[s_1 = \Phi_4(X_0 X_1^{-1}) \cdot \Phi_4(Y_0 Y_1^{-1}) \cdot \Phi_3(X_0 Y_0 X_1^{-1} Y_1^{-1}) \cdot \Phi_6(X_0 Y_0 X_1^{-1} Y_1^{-1}) \]

\[s_2 = 2 \cdot X_1^2 X_0^{-2} \cdot \Phi_3(X_0 Y_0 X_1^{-1} Y_1^{-1}) \cdot \Phi_6(X_0 Y_1 X_1^{-1} Y_0^{-1}) \]

\[\Phi_4(x) = x^2 + 1, \quad \Phi_3(x) = x^2 + x + 1, \quad \Phi_6(x) = x^2 - x + 1. \]
Cyclotomic Hecke algebras

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_K-algebra morphism $\phi : \mathbb{Z}_K[v, v^{-1}] \to \mathbb{Z}_K[y, y^{-1}]$ of the form:

$$\phi : v_{s,j} \mapsto y^{n_{s,j}}$$

where $n_{s,j} \in \mathbb{Z}$ for all s and j.

Proposition (C.)

The algebra $\mathbb{K}(y)H_\phi$ is split semisimple.
Cyclotomic Hecke algebras

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_K-algebra morphism $\phi : \mathbb{Z}_K[v, v^{-1}] \to \mathbb{Z}_K[y, y^{-1}]$ of the form:

$$\phi : v_{s,j} \mapsto y^{n_{s,j}}$$

where $n_{s,j} \in \mathbb{Z}$ for all s and j.

The corresponding cyclotomic Hecke algebra \mathcal{H}_ϕ is the $\mathbb{Z}_K[y, y^{-1}]$-algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ.

Proposition (C.)

The algebra $K(y) \mathcal{H}_\phi$ is split semisimple.
Cyclotomic Hecke algebras

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_K-algebra morphism $\phi : \mathbb{Z}_K[v, v^{-1}] \to \mathbb{Z}_K[y, y^{-1}]$ of the form:

$$\phi : v_{s,j} \mapsto y^{n_{s,j}}$$

where $n_{s,j} \in \mathbb{Z}$ for all s and j.

The corresponding cyclotomic Hecke algebra \mathcal{H}_ϕ is the $\mathbb{Z}_K[y, y^{-1}]$-algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ.

If $q := y^{|\mu(K)|}$, then the morphism ϕ can be also described as follows:

$$\phi : u_{s,j} \mapsto \zeta_j^{o(s)} q^{n_{s,j}}.$$
Cyclotomic Hecke algebras

Let y be an indeterminate. A cyclotomic specialization of \mathcal{H} is a \mathbb{Z}_K-algebra morphism $\phi : \mathbb{Z}_K[v, v^{-1}] \to \mathbb{Z}_K[y, y^{-1}]$ of the form:

$$\phi : v_{s,j} \mapsto y^{n_{s,j}}$$

where $n_{s,j} \in \mathbb{Z}$ for all s and j.

The corresponding cyclotomic Hecke algebra \mathcal{H}_ϕ is the $\mathbb{Z}_K[y, y^{-1}]$-algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ.

If $q := y^{|\mu(K)|}$, then the morphism ϕ can be also described as follows:

$$\phi : u_{s,j} \mapsto \zeta_{\mathcal{O}(s)}^j q^{n_{s,j}}.$$

Proposition (C.)

The algebra $K(y)\mathcal{H}_\phi$ is split semisimple.
By “Tits’ deformation theorem”, we obtain that the specialization \(v_{s,j} \mapsto 1 \) induces the following bijections:

\[
\text{Irr}(K(v)H) \leftrightarrow \text{Irr}(K(y)H_{\phi}) \leftrightarrow \text{Irr}(W)
\]

\[
\chi_v \mapsto \chi_{\phi} \mapsto \chi
\]
By “Tits’ deformation theorem”, we obtain that the specialization $\nu_{s,j} \mapsto 1$ induces the following bijections:

$$
\begin{align*}
\text{Irr}(K(\nu)\mathcal{H}) & \leftrightarrow \text{Irr}(K(y)\mathcal{H}_\phi) & \leftrightarrow \text{Irr}(W) \\
\chi_{\nu} & \mapsto \chi_\phi & \mapsto \chi
\end{align*}
$$

Proposition

The Schur element $s_{\chi_\phi}(y)$ associated to the irreducible character χ_ϕ of $K(y)\mathcal{H}_\phi$ is a Laurent polynomial in y of the form

$$
s_{\chi_\phi}(y) = \psi_{\chi_\phi} y^{a_{\chi_\phi}} \prod_{\Phi \in C_K} \Phi(y)^{n_{\chi_\phi,\Phi}},
$$

where $\psi_{\chi_\phi} \in \mathbb{Z}_K$, $a_{\chi_\phi} \in \mathbb{Z}$, $n_{\chi_\phi,\Phi} \in \mathbb{N}$ and C_K is a set of K-cyclotomic polynomials.
Rouquier blocks of \mathcal{H}_ϕ

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_ϕ are the blocks of the algebra $\mathcal{R}_K(y)\mathcal{H}_\phi$, where

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)^{-1}]_{n \geq 1}$$
Rouquier blocks of \mathcal{H}_ϕ

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_ϕ are the blocks of the algebra $\mathcal{R}_K(y)\mathcal{H}_\phi$, where

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)^{-1}_{n \geq 1}]$$

i.e., the partition $\mathcal{RB}(\mathcal{H}_\phi)$ of $\text{Irr}(\mathcal{W})$ minimal for the property:

For all $B \in \mathcal{RB}(\mathcal{H}_\phi)$ and $h \in \mathcal{H}_\phi$, $\sum_{\chi \in B} \frac{\chi_\phi(h)}{s_{\chi_\phi}} \in \mathcal{R}_K(y)$.

Weyl group: Rouquier blocks \equiv families of characters

W c.r.g (non-Weyl) : Rouquier blocks \equiv "families of characters"

Maria Chlouveraki (EPFL) Families of characters of the imprimitive c.r.g November 29, 2008 10 / 27
Rouquier blocks of \mathcal{H}_ϕ

The **Rouquier blocks** of the cyclotomic Hecke algebra \mathcal{H}_ϕ are the blocks of the algebra $\mathcal{R}_K(y)\mathcal{H}_\phi$, where

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)^{-1}_{n \geq 1}]$$

i.e., the partition $\mathcal{RB}(\mathcal{H}_\phi)$ of $\text{Irr}(\mathcal{W})$ minimal for the property:

For all $B \in \mathcal{RB}(\mathcal{H}_\phi)$ and $h \in \mathcal{H}_\phi$, \(\sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_K(y). \)

Weyl group : Rouquier blocks \equiv families of characters
Rouquier blocks of \mathcal{H}_ϕ

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_ϕ are the blocks of the algebra $\mathcal{R}_K(y)\mathcal{H}_\phi$, where

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)^{-1}]_{n \geq 1}$$

i.e., the partition $\mathcal{RB}(\mathcal{H}_\phi)$ of $\text{Irr}(W)$ minimal for the property:

For all $B \in \mathcal{RB}(\mathcal{H}_\phi)$ and $h \in \mathcal{H}_\phi$, $\sum_{\chi \in B} \frac{\chi_\phi(h)}{s_{\chi_\phi}} \in \mathcal{R}_K(y)$.

W Weyl group : Rouquier blocks \equiv families of characters

W c.r.g. (non-Weyl) : Rouquier blocks \equiv “families of characters”
Essential monomials and essential hyperplanes

Let p be a prime ideal of \mathbb{Z}_K.
Let \(p \) be a prime ideal of \(\mathbb{Z}_K \).

A primitive monomial \(M \) in \(\mathbb{Z}_K[v, v^{-1}] \) is called \(p \)-essential for \(W \) if there exist an irreducible character \(\chi \) of \(W \) and a \(K \)-cyclotomic polynomial \(\Psi \) such that

\[
\Psi(M) \mid s \chi(v)
\]
Essential monomials and essential hyperplanes

Let p be a prime ideal of \mathbb{Z}_K.

A primitive monomial M in $\mathbb{Z}_K[v, v^{-1}]$ is called p-essential for W if there exist an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

$$\Psi(M) \text{ divides } s_\chi(v).$$
Essential monomials and essential hyperplanes

Let p be a prime ideal of \mathbb{Z}_K.

A primitive monomial M in $\mathbb{Z}_K[v, v^{-1}]$ is called p-essential for W if there exist an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

1. $\Psi(M)$ divides $s_\chi(v)$
2. $\Psi(1) \in p$.

Maria Chlouveraki (EPFL) Families of characters of the imprimitive c.r.g November 29, 2008 11 / 27
Essential monomials and essential hyperplanes

Let p be a prime ideal of \mathbb{Z}_K.

A primitive monomial M in $\mathbb{Z}_K[v, v^{-1}]$ is called p-essential for W if there exist an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

1. $\Psi(M)$ divides $s_\chi(v)$
2. $\Psi(1) \in p$.

A primitive monomial M is called essential for W if it is p-essential for some prime ideal p of \mathbb{Z}_K.

Maria Chlouveraki (EPFL) Families of characters of the imprimitive c.r.g November 29, 2008 11 / 27
Schur elements of G_2 : 2-essential in purple, 3-essential in green.

\[s_1 = \Phi_4(X_0 X_1^{-1}) \cdot \Phi_4(Y_0 Y_1^{-1}) \cdot \Phi_3(X_0 Y_0 X_1^{-1} Y_1^{-1}) \cdot \Phi_6(X_0 Y_0 X_1^{-1} Y_1^{-1}) \]

\[s_2 = 2 \cdot X_1^2 X_0^{-2} \cdot \Phi_3(X_0 Y_0 X_1^{-1} Y_1^{-1}) \cdot \Phi_6(X_0 Y_1 X_1^{-1} Y_0^{-1}) \]

\[
\begin{align*}
\Phi_4(x) &= x^2 + 1, & \Phi_3(x) &= x^2 + x + 1, & \Phi_6(x) &= x^2 - x + 1. \\
\Phi_4(1) &= 2, & \Phi_3(1) &= 3, & \Phi_6(1) &= 1.
\end{align*}
\]
Let $\phi : v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and let $M = \prod_{s,j} v_{s,j}^{a_{s,j}}$ be an essential monomial for W.

Theorem (C.)

Let $\phi : v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization. The Rouquier blocks of H_ϕ is a partition generated by the Rouquier blocks associated with the essential hyperplanes that the $n_{s,j}$ belong to.
Let $\phi : v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and let $M = \prod_{s,j} v_{s,j}^{a_{s,j}}$ be an essential monomial for W. We have

$$\phi(M) = 1 \iff \sum_{s,j} a_{s,j} n_{s,j} = 0.$$
Let $\phi : v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and let $M = \prod_{s,j} v_{s,j}^{a_{s,j}}$ be an essential monomial for W. We have

$$\phi(M) = 1 \iff \sum_{s,j} a_{s,j}n_{s,j} = 0.$$

The hyperplane $\sum_{s,j} a_{s,j}t_{s,j} = 0$ is called an essential hyperplane for W.

Maria Chlouveraki (EPFL)
Families of characters of the imprimitive c.r.g
November 29, 2008
Let $\phi : v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and let $M = \prod_{s,j} v_{s,j}^{a_{s,j}}$ be an essential monomial for W. We have

\[\phi(M) = 1 \iff \sum_{s,j} a_{s,j} n_{s,j} = 0. \]

The hyperplane $\sum_{s,j} a_{s,j} t_{s,j} = 0$ is called an essential hyperplane for W.

- If the integers $n_{s,j}$ belong to no essential hyperplane, then the Rouquier blocks of H_ϕ are called Rouquier blocks associated with no essential hyperplane.
Let $\phi : v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and let $M = \prod_{s,j} v_{s,j}^{a_{s,j}}$ be an essential monomial for W. We have

$$\phi(M) = 1 \iff \sum_{s,j} a_{s,j} n_{s,j} = 0.$$

The hyperplane $\sum_{s,j} a_{s,j} t_{s,j} = 0$ is called an essential hyperplane for W.

- If the integers $n_{s,j}$ belong to no essential hyperplane, then the Rouquier blocks of \mathcal{H}_ϕ are called Rouquier blocks associated with no essential hyperplane.

- If the integers $n_{s,j}$ belong to exactly one essential hyperplane H, then the Rouquier blocks of \mathcal{H}_ϕ are called Rouquier blocks associated with the essential hyperplane H.

\[\text{Theorem (C.)} \]
Let $\phi : v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization and let $M = \prod_{s,j} v_{s,j}^{a_{s,j}}$ be an essential monomial for W. We have

$$\phi(M) = 1 \iff \sum_{s,j} a_{s,j} n_{s,j} = 0.$$

The hyperplane $\sum_{s,j} a_{s,j} t_{s,j} = 0$ is called an essential hyperplane for W.

- If the integers $n_{s,j}$ belong to no essential hyperplane, then the Rouquier blocks of H_ϕ are called Rouquier blocks associated with no essential hyperplane.

- If the integers $n_{s,j}$ belong to exactly one essential hyperplane H, then the Rouquier blocks of H_ϕ are called Rouquier blocks associated with the essential hyperplane H.

Theorem (C.)

Let $\phi : v_{s,j} \mapsto y^{n_{s,j}}$ be a cyclotomic specialization. The Rouquier blocks of H_ϕ is a partition generated by the Rouquier blocks associated with the essential hyperplanes that the $n_{s,j}$ belong to.
Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_h)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_h \geq 1.$$
Combinatorics

Let \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_h) \) be a partition, i.e., a finite decreasing sequence of positive integers:

\[
\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_h \geq 1.
\]

The integer \(|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_h \) is called the size of \(\lambda \). We also say that \(\lambda \) is a partition of \(|\lambda| \).
Combinatorics

Let \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_h) \) be a partition, i.e., a finite decreasing sequence of positive integers:

\[
\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_h \geq 1.
\]

The integer \(|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_h\) is called the size of \(\lambda \). We also say that \(\lambda \) is a partition of \(|\lambda|\). The integer \(h \) is called the height of \(\lambda \) and we set \(h_{\lambda} := h \).
Combinatorics

Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_h)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_h \geq 1.$$

The integer $|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_h$ is called the size of λ. We also say that λ is a partition of $|\lambda|$. The integer h is called the height of λ and we set $h_\lambda := h$.

To each partition λ we associate its β-number, $\beta_\lambda = (\beta_1, \beta_2, \ldots, \beta_h)$, defined by

$$\beta_1 := h + \lambda_1 - 1, \beta_2 := h + \lambda_2 - 2, \ldots, \beta_h := h + \lambda_h - h.$$
Combinatorics

Let \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_h) \) be a partition, i.e., a finite decreasing sequence of positive integers:

\[
\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_h \geq 1.
\]

The integer \(|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_h \) is called the size of \(\lambda \). We also say that \(\lambda \) is a partition of \(|\lambda| \). The integer \(h \) is called the height of \(\lambda \) and we set \(h_\lambda := h \).

To each partition \(\lambda \) we associate its \(\beta \)-number, \(\beta_\lambda = (\beta_1, \beta_2, \ldots, \beta_h) \), defined by

\[
\beta_1 := h + \lambda_1 - 1, \beta_2 := h + \lambda_2 - 2, \ldots, \beta_h := h + \lambda_h - h.
\]

Example: If \(\lambda = (4, 2, 2, 1) \), then \(\beta_\lambda = (7, 4, 3, 1) \).
Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_h)$ be a partition, i.e., a finite decreasing sequence of positive integers:

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_h \geq 1.$$

The integer $|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_h$ is called the size of λ. We also say that λ is a partition of $|\lambda|$. The integer h is called the height of λ and we set $h_\lambda := h$.

To each partition λ we associate its β-number, $\beta_\lambda = (\beta_1, \beta_2, \ldots, \beta_h)$, defined by

$$\beta_1 := h + \lambda_1 - 1, \beta_2 := h + \lambda_2 - 2, \ldots, \beta_h := h + \lambda_h - h.$$

Example: If $\lambda = (4, 2, 2, 1)$, then $\beta_\lambda = (7, 4, 3, 1)$.

Let $m \in \mathbb{N}$. The m-shifted β-number of λ is the sequence of numbers defined by

$$\beta_\lambda[m] = (\beta_1 + m, \beta_2 + m, \ldots, \beta_h + m, m - 1, m - 2, \ldots, 1, 0).$$
Let \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_h) \) be a partition, i.e., a finite decreasing sequence of positive integers:

\[
\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_h \geq 1.
\]

The integer \(|\lambda| := \lambda_1 + \lambda_2 + \ldots + \lambda_h\) is called the size of \(\lambda \). We also say that \(\lambda \) is a partition of \(|\lambda|\). The integer \(h \) is called the height of \(\lambda \) and we set \(h_\lambda := h \).

To each partition \(\lambda \) we associate its \(\beta \)-number, \(\beta_\lambda = (\beta_1, \beta_2, \ldots, \beta_h) \), defined by

\[
\beta_1 := h + \lambda_1 - 1, \beta_2 := h + \lambda_2 - 2, \ldots, \beta_h := h + \lambda_h - h.
\]

Example: If \(\lambda = (4, 2, 2, 1) \), then \(\beta_\lambda = (7, 4, 3, 1) \).

Let \(m \in \mathbb{N} \). The \(m \)-shifted \(\beta \)-number of \(\lambda \) is the sequence of numbers defined by

\[
\beta_\lambda[m] = (\beta_1 + m, \beta_2 + m, \ldots, \beta_h + m, m - 1, m - 2, \ldots, 1, 0).
\]

Example: If \(\lambda = (4, 2, 2, 1) \), then \(\beta_\lambda[3] = (10, 7, 6, 4, 2, 1, 0) \).
Let \(d \) be a positive integer. A family of \(d \) partitions \(\lambda = (\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}) \) is called a \(d \)-partition.
Let \(d \) be a positive integer. A family of \(d \) partitions \(\lambda = (\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}) \) is called a \(d \)-partition. We set

\[
h^{(a)} := h_{\lambda^{(a)}}, \quad \beta^{(a)} := \beta_{\lambda^{(a)}},
\]

and we have

\[
\lambda^{(a)} = (\lambda_1^{(a)}, \lambda_2^{(a)}, \ldots, \lambda_{h^{(a)}}^{(a)}).
\]
Let d be a positive integer. A family of d partitions $\lambda = (\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)})$ is called a d-partition. We set

$$h^{(a)} := h_{\lambda^{(a)}}, \quad \beta^{(a)} := \beta_{\lambda^{(a)}}$$

and we have

$$\lambda^{(a)} = (\lambda_{1}^{(a)}, \lambda_{2}^{(a)}, \ldots, \lambda_{h^{(a)}}^{(a)}).$$

The integer

$$|\lambda| := \sum_{a=0}^{d-1} |\lambda^{(a)}|$$

is called the size of λ. We also say that λ is a d-partition of $|\lambda|$.
Let \(d \) be a positive integer. A family of \(d \) partitions \(\lambda = (\lambda^{(0)}, \lambda^{(1)}, \ldots, \lambda^{(d-1)}) \) is called a \(d \)-partition. We set

\[
h^{(a)} := h_{\lambda^{(a)}}, \quad \beta^{(a)} := \beta_{\lambda^{(a)}}
\]

and we have

\[
\lambda^{(a)} = (\lambda_{1}^{(a)}, \lambda_{2}^{(a)}, \ldots, \lambda_{h^{(a)}}^{(a)}).
\]

The integer

\[
|\lambda| := \sum_{a=0}^{d-1} |\lambda^{(a)}|
\]

is called the size of \(\lambda \). We also say that \(\lambda \) is a \(d \)-partition of \(|\lambda|\).

From now on, we suppose that we have a given “weight system”, i.e., a family of integers

\[
m := (m^{(0)}, m^{(1)}, \ldots, m^{(d-1)}).
\]
We define the \(m \)-charged height of \(\lambda \) to be the integer

\[
hc_{\lambda} := \max \{ hc^{(a)} | (0 \leq a \leq d - 1) \},
\]

where

\[
hc^{(0)} := h^{(0)} - m^{(0)}, \quad hc^{(1)} := h^{(1)} - m^{(1)}, \ldots, \quad hc^{(d-1)} := h^{(d-1)} - m^{(d-1)}.
\]
We define the m-charged height of λ to be the integer

$$hc_\lambda := \max \{hc^{(a)} | (0 \leq a \leq d - 1)\},$$

where

$$hc^{(0)} := h^{(0)} - m^{(0)}, \, hc^{(1)} := h^{(1)} - m^{(1)}, \ldots, \, hc^{(d-1)} := h^{(d-1)} - m^{(d-1)}.$$

Definition (m-charged standard symbol and content)

The m-charged standard symbol of λ is the family of numbers defined by

$$Bc_\lambda = (Bc^{(0)}_\lambda, Bc^{(1)}_\lambda, \ldots, Bc^{(d-1)}_\lambda),$$

where, for all a ($0 \leq a \leq d - 1$), we have

$$Bc^{(a)}_\lambda := \beta^{(a)}[hc_\lambda - hc^{(a)}].$$
We define the \textit{m-charged height} of \(\lambda \) to be the integer
\[
hc_\lambda := \max \{ hc^{(a)} | (0 \leq a \leq d - 1) \},
\]
where
\[
hc^{(0)} := h^{(0)} - m^{(0)}, \quad hc^{(1)} := h^{(1)} - m^{(1)}, \ldots, \quad hc^{(d-1)} := h^{(d-1)} - m^{(d-1)}.
\]

Definition (m-charged standard symbol and content)

The \textit{m-charged standard symbol} of \(\lambda \) is the family of numbers defined by
\[
B_{c_\lambda} = (B_{c_\lambda}^{(0)}, B_{c_\lambda}^{(1)}, \ldots, B_{c_\lambda}^{(d-1)}),
\]
where, for all \(a \) (\(0 \leq a \leq d - 1 \)), we have
\[
B_{c_\lambda}^{(a)} := \beta^{(a)}[hc_\lambda - hc^{(a)}].
\]

The \textit{m-charged content} of \(\lambda \) is the multiset
\[
\text{Cont}_{c_\lambda} = B_{c_\lambda}^{(0)} \cup B_{c_\lambda}^{(1)} \cup \ldots \cup B_{c_\lambda}^{(d-1)}.
\]
Example: Let us take $d = 2$, $\lambda = ((3), (2, 1))$ and $m = (2, -1)$. Then

- $\beta^{(0)} = (3)$,
- $\beta^{(1)} = (3, 1)$,
- $hc^{(0)} = 1 - 2 = -1$,
- $hc^{(1)} = 2 - (-1) = 3$.

Example: Let us take $d = 2$, $\lambda = ((3), (2, 1))$ and $m = (2, -1)$. Then

- $\beta^{(0)} = (3)$,
- $\beta^{(1)} = (3, 1)$,
- $hc^{(0)} = 1 - 2 = -1$,
- $hc^{(1)} = 2 - (-1) = 3 = h\lambda$.
Example: Let us take $d = 2$, $\lambda = ((3), (2, 1))$ and $m = (2, -1)$. Then

- $\beta^{(0)} = (3)$,
- $\beta^{(1)} = (3, 1)$,
- $hc^{(0)} = 1 - 2 = -1$,
- $hc^{(1)} = 2 - (-1) = 3 = hc_\lambda$.

Consequently,

$$Bc_\lambda = \begin{pmatrix} 7 & 3 & 2 & 1 & 0 \\ 3 & 1 & & & \end{pmatrix}.$$
Example: Let us take $d = 2$, $\lambda = ((3), (2, 1))$ and $m = (2, -1)$. Then

- $\beta^{(0)} = (3)$,
- $\beta^{(1)} = (3, 1)$,
- $hc^{(0)} = 1 - 2 = -1$,
- $hc^{(1)} = 2 - (-1) = 3 = hc_\lambda$.

Consequently,

$$Bc_\lambda = \begin{pmatrix} 7 & 3 & 2 & 1 & 0 \\ 3 & 1 \\ & & & & \end{pmatrix}.$$

We have $\text{Contc}_\lambda = \{0, 1, 1, 2, 3, 3, 7\}$.
The group $G(d, 1, r)$

The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_d.
The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_d.
- $G(d, 1, r) \simeq \mu_d \wr S_r$.

Maria Chlouveraki (EPFL) Families of characters of the imprimitive c.r.g November 29, 2008 18 / 27
The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_d.
- $G(d, 1, r) \cong \mu_d \wr \mathfrak{S}_r$.
- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.

Maria Chlouveraki (EPFL) Families of characters of the imprimitive c.r.g November 29, 2008 18 / 27
The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_d.

- $G(d, 1, r) \simeq \mu_d \wr \mathfrak{S}_r$.

- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.

- The field of definition of $G(d, 1, r)$ is $\mathbb{Q}(\zeta_d)$.
The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_d.

- $G(d, 1, r) \simeq \mu_d \wr \mathfrak{S}_r$.

- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.

- The field of definition of $G(d, 1, r)$ is $\mathbb{Q}(\zeta_d)$.

- $G(1, 1, r) \simeq A_{r-1}$ for $r \geq 2$.
The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_d.

- $G(d, 1, r) \simeq \mu_d \wr S_r$.

- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.

- The field of definition of $G(d, 1, r)$ is $\mathbb{Q}(\zeta_d)$.

- $G(1, 1, r) \simeq A_{r-1}$ for $r \geq 2$,

- $G(2, 1, r) \simeq B_r$ for $r \geq 2$
The group $G(d, 1, r)$

- The group $G(d, 1, r)$ is the group of all $r \times r$ monomial matrices whose non-zero entries lie in μ_d.
- $G(d, 1, r) \simeq \mu_d \wr \mathfrak{S}_r$.
- The irreducible characters of $G(d, 1, r)$ are indexed by the d-partitions of r.
- The field of definition of $G(d, 1, r)$ is $\mathbb{Q}(\zeta_d)$.

- $G(1, 1, r) \simeq A_{r-1}$ for $r \geq 2$,
- $G(2, 1, r) \simeq B_r$ for $r \geq 2$ ($G(2, 1, 1) \simeq C_2$).
Ariki-Koike algebras

The “generic” Ariki-Koike algebra associated to $G(d, 1, r)$ is the algebra $\mathcal{H}_{d,r}$ generated over the Laurent polynomial ring in $d + 1$ indeterminates

$$\mathbb{Z}[u_0, u_0^{-1}, u_1, u_1^{-1}, \ldots, u_{d-1}, u_{d-1}^{-1}, x, x^{-1}]$$

by the elements $s, t_1, t_2, \ldots, t_{r-1}$ satisfying the relations

- $st_1st_1 = t_1st_1s$,
- $st_j = t_j s$, for all $j = 2, \ldots, r - 1$,
- $t_{j-1}t_jt_{j-1} = t_jt_{j-1}t_j$, for all $j = 2, \ldots, r - 1$,
- $t_it_j = t_jt_i$, for all $1 \leq i, j \leq r - 1$ with $|i - j| > 1$,
- $(s - u_0)(s - u_1)\ldots(s - u_{d-1}) = 0$,
- $(t_j - x)(t_j + 1) = 0$, for all $j = 1, \ldots, r - 1$.
The Schur elements of $\mathcal{H}_{d,r}$ have been calculated independently by Geck, Iancu, Malle (2000), Mathas (2004).

Let $\varphi : \{ u_j \mapsto \zeta^d_j q^m, (0 \leq j < d) \}$ be a cyclotomic specialization for $\mathcal{H}_{d,r}$.

Proposition (C.)

The essential hyperplanes for $G(\mathcal{H}_{d,1})$ are given by:

$$N_k N + M_s - M_t = 0 \quad \text{for} \quad -r < k < r \quad \text{and} \quad 0 \leq s < t < d \quad \text{such that} \quad \zeta^s d - \zeta^t d \text{ is not a unit in } \mathbb{Z}[\zeta^d].$$
The Schur elements of $\mathcal{H}_{d,r}$ have been calculated independently by

- Geck, Iancu, Malle (2000),
The Schur elements of $\mathcal{H}_{d,r}$ have been calculated independently by

- Geck, Iancu, Malle (2000),
The Schur elements of $\mathcal{H}_{d,r}$ have been calculated independently by

- Geck, Iancu, Malle (2000),

Let
\[\phi : \begin{cases}
 u_j &\mapsto \zeta_d^j q^{m_j}, \quad (0 \leq j < d), \\
 x &\mapsto q^n
\end{cases} \]
be a cyclotomic specialization for $\mathcal{H}_{d,r}$.
The Schur elements of $\mathcal{H}_{d,r}$ have been calculated independently by

- Geck, Iancu, Malle (2000),

Let

$$
\phi : \begin{cases}
 u_j \mapsto \zeta_d^j q^{m_j}, (0 \leq j < d), \\
 x \mapsto q^n
\end{cases}
$$

be a cyclotomic specialization for $\mathcal{H}_{d,r}$.

Proposition (C.)

The essential hyperplanes for $G(d, 1, r)$ are given by:
The Schur elements of $\mathcal{H}_{d,r}$ have been calculated independently by

- Geck, Iancu, Malle (2000),

Let

$$\phi : \begin{cases} u_j \mapsto \zeta_d^j q^{m_j}, (0 \leq j < d), \\ x \mapsto q^n \end{cases}$$

be a cyclotomic specialization for $\mathcal{H}_{d,r}$.

Proposition (C.)

The essential hyperplanes for $G(d, 1, r)$ are given by:

- $N = 0$.

The Schur elements of $\mathcal{H}_{d,r}$ have been calculated independently by

- Geck, Iancu, Malle (2000),

Let

$$\phi : \begin{cases}
 u_j &\mapsto \zeta_d^j q^{m_j}, (0 \leq j < d), \\
 x &\mapsto q^n
\end{cases}$$

be a cyclotomic specialization for $\mathcal{H}_{d,r}$.

Proposition (C.)

The essential hyperplanes for $G(d,1,r)$ are given by:

- $N = 0$.
- $kN + M_s - M_t = 0$ for $-r < k < r$ and $0 \leq s < t < d$ such that
The Schur elements of $\mathcal{H}_{d,r}$ have been calculated independently by

- Geck, Iancu, Malle (2000),

Let

$$\phi : \begin{cases}
 u_j \mapsto \zeta_d^j q^{m_j}, (0 \leq j < d), \\
 x \mapsto q^n
\end{cases}$$

be a cyclotomic specialization for $\mathcal{H}_{d,r}$.

Proposition (C.)

The essential hyperplanes for $G(d, 1, r)$ are given by:

- $N = 0$.
- $kN + M_s - M_t = 0$ for $-r < k < r$ and $0 \leq s < t < d$ such that

 $$\zeta_d^s - \zeta_d^t$$

 is not a unit in $\mathbb{Z}[\zeta_d]$.
Rouquier blocks of the “cyclotomic” Ariki-Koike algebras

Proposition
The Rouquier blocks associated with no essential hyperplane are trivial.

In order to obtain a description for the Rouquier blocks associated with the essential hyperplanes of $G(d,1,r)$, we have used the algorithm for the blocks of the Ariki-Koike algebra over a field given by Lyle and Mathas (2007).

Proposition (C.)
Let λ,μ be two d-partitions of r. The characters χ_λ and χ_μ are in the same Rouquier block associated with the essential hyperplane $N = 0$ if and only if $|\lambda(a)| = |\mu(a)|$ for all $a = 0, 1, \ldots, d - 1$.

Maria Chlouveraki (EPFL)
Families of characters of the imprimitive c.r.g
November 29, 2008 21 / 27
Proposition

The Rouquier blocks associated with no essential hyperplane are trivial.
Rouquier blocks of the “cyclotomic” Ariki-Koike algebras

Proposition

The Rouquier blocks associated with no essential hyperplane are trivial.

In order to obtain a description for the Rouquier blocks associated with the essential hyperplanes of $G(d, 1, r)$, we have used the algorithm for the blocks of the Ariki-Koike algebra over a field given by Lyle and Mathas (2007).
Rouquier blocks of the “cyclotomic” Ariki-Koike algebras

Proposition

The Rouquier blocks associated with no essential hyperplane are trivial.

In order to obtain a description for the Rouquier blocks associated with the essential hyperplanes of $G(d, 1, r)$, we have used the algorithm for the blocks of the Ariki-Koike algebra over a field given by Lyle and Mathas (2007).

Proposition (C.)

Let λ, μ be two d-partitions of r. The characters χ_λ and χ_μ are in the same Rouquier block associated with the essential hyperplane $N = 0$ if and only if

$$|\lambda^{(a)}| = |\mu^{(a)}| \text{ for all } a = 0, 1, \ldots, d - 1.$$
Let $H : kN + M_s - M_t = 0$ be an essential hyperplane for $G(d, 1, r)$ and let

$$\phi : \left\{ \begin{array}{l}
u_j \mapsto \zeta_d^j q^{m_j}, (0 \leq j < d), \\
x \mapsto q^n \end{array} \right.$$

be a cyclotomic specialization such that $kn + m_s - m_t = 0$ and the integers n and $m_j \ (0 \leq j < d)$ belong to no other essential hyperplane for $G(d, 1, r)$.

Theorem (Broué-Kim)

Let λ, μ be two d-partitions of r. If the irreducible characters (χ_λ) and (χ_μ) are in the same Rouquier block of (H_d, r), then

$$\text{Cont}^c_\lambda = \text{Cont}^c_\mu$$

with respect to the weight system $(m_0, m_1, \ldots, m_{d-1})$.

The converse is true when d is a power of a prime number.
Let $H : kN + M_s - M_t = 0$ be an essential hyperplane for $G(d, 1, r)$ and let

$$\phi : \begin{cases}
 u_j \mapsto \zeta_d^j q^{m_j}, (0 \leq j < d), \\
 x \mapsto q^n \end{cases}$$

be a cyclotomic specialization such that $kn + m_s - m_t = 0$ and the integers n and m_j ($0 \leq j < d$) belong to no other essential hyperplane for $G(d, 1, r)$. Without loss of generality, we shall assume that $n = 1$.

Theorem (Broué-Kim) Let λ, μ be two d-partitions of r. If the irreducible characters $(\chi_{\lambda})_{\phi}$ and $(\chi_{\mu})_{\phi}$ are in the same Rouquier block of (\mathcal{H}_d, r), then $\text{Contc}_{\lambda} = \text{Contc}_{\mu}$ with respect to the weight system $(m_0, m_1, \ldots, m_{d-1})$.

The converse is true when d is a power of a prime number.
Let \(H : kN + M_s - M_t = 0 \) be an essential hyperplane for \(G(d, 1, r) \) and let

\[
\phi : \left\{ \begin{array}{l}
 u_j \mapsto \zeta_d^j q^{m_j}, (0 \leq j < d), \\
 x \mapsto q^n
\end{array} \right.
\]

be a cyclotomic specialization such that \(kn + m_s - m_t = 0 \) and the integers \(n \) and \(m_j \ (0 \leq j < d) \) belong to no other essential hyperplane for \(G(d, 1, r) \). Without loss of generality, we shall assume that \(n = 1 \).

Theorem (Broué-Kim)

Let \(\lambda, \mu \) be two \(d \)-partitions of \(r \). If the irreducible characters \((\chi_\lambda)_\phi \) and \((\chi_\mu)_\phi \) are in the same Rouquier block of \((\mathcal{H}_{d,r})_\phi \), then \(\text{Contc}_{\lambda} = \text{Contc}_{\mu} \) with respect to the weight system \((m_0, m_1, \ldots, m_{d-1}) \).
Let $H : kN + M_s - M_t = 0$ be an essential hyperplane for $G(d, 1, r)$ and let

$$
\phi : \begin{cases}
 u_j &\mapsto \zeta_d^j q^{m_j}, (0 \leq j < d), \\
 x &\mapsto q^n
\end{cases}
$$

be a cyclotomic specialization such that $kn + m_s - m_t = 0$ and the integers n and $m_j (0 \leq j < d)$ belong to no other essential hyperplane for $G(d, 1, r)$. Without loss of generality, we shall assume that $n = 1$.

Theorem (Broué-Kim)

Let λ, μ be two d-partitions of r. If the irreducible characters $(\chi_\lambda)_\phi$ and $(\chi_\mu)_\phi$ are in the same Rouquier block of $(\mathcal{H}_{d,r})_\phi$, then $\text{Cont}_{c\lambda} = \text{Cont}_{c\mu}$ with respect to the weight system $(m_0, m_1, \ldots, m_{d-1})$. The converse is true when d is a power of a prime number.
Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $(\chi_{\lambda})_{\phi}$ and $(\chi_{\mu})_{\phi}$ are in the same Rouquier block of $(\mathcal{H}_{d,r})_{\phi}$ if and only if:

1. We have $\lambda(a) = \mu(a)$ for all $a \in \{s, t\}$.
2. If $\lambda_{st} := (\lambda(s), \lambda(t))$ and $\mu_{st} := (\mu(s), \mu(t))$, then $\text{Contc}_{\lambda_{st}} = \text{Contc}_{\mu_{st}}$ with respect to the weight system (m_s, m_t).

Let λ_{st} and μ_{st} be as above and set $l := |\lambda_{st}| = |\mu_{st}|$.

Let us consider the Ariki-Koike algebra $\mathcal{H}_{2,l}$ of $G(2,1,l)$ over the Laurent polynomial ring $\mathbb{Z}[U_0, U_{-1}, U_1, U_{-1}, X, X_{-1}]$ and the cyclotomic specialization $\vartheta: U_0 \mapsto q^{m_s}, U_1 \mapsto -q^{m_t}, X \mapsto q^n$.

By the theorem of Broué-Kim, we have $\text{Contc}_{\lambda_{st}} = \text{Contc}_{\mu_{st}}$ with respect to the weight system (m_s, m_t) if and only if the corresponding characters of $G(2,1,l)$ belong to the same Rouquier block of $(\mathcal{H}_{d,r})_{\vartheta}$.
Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $(\chi_\lambda)_\phi$ and $(\chi_\mu)_\phi$ are in the same Rouquier block of $(H_{d,r})_\phi$ if and only if:

1. We have $\lambda^{(a)} = \mu^{(a)}$ for all $a \notin \{s, t\}$.
Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $(\chi_{\lambda})_{\phi}$ and $(\chi_{\mu})_{\phi}$ are in the same Rouquier block of $(\mathcal{H}_{d,r})_{\phi}$ if and only if:

1. We have $\lambda^{(a)} = \mu^{(a)}$ for all $a \notin \{s, t\}$.

2. If $\lambda^{st} := (\lambda^{(s)}, \lambda^{(t)})$ and $\mu^{st} := (\mu^{(s)}, \mu^{(t)})$, then $\text{Contc}_{\lambda^{st}} = \text{Contc}_{\mu^{st}}$ with respect to the weight system (m_s, m_t).
Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $(\chi_{\lambda})_\phi$ and $(\chi_{\mu})_\phi$ are in the same Rouquier block of $(\mathcal{H}_{d,r})_\phi$ if and only if:

1. We have $\lambda^{(a)} = \mu^{(a)}$ for all $a \notin \{s, t\}$.

2. If $\lambda^{st} := (\lambda^{(s)}, \lambda^{(t)})$ and $\mu^{st} := (\mu^{(s)}, \mu^{(t)})$, then $\text{Contc}_{\lambda^{st}} = \text{Contc}_{\mu^{st}}$ with respect to the weight system (m_s, m_t).

Let λ^{st} and μ^{st} be as above and set $l := |\lambda^{st}| = |\mu^{st}|$.
Proposition (C.)

Let \(\lambda, \mu \) be two \(d \)-partitions of \(r \). The irreducible characters \((\chi_\lambda)_\phi\) and \((\chi_\mu)_\phi\) are in the same Rouquier block of \((\mathcal{H}_{d,r})_\phi\) if and only if:

1. We have \(\lambda^{(a)} = \mu^{(a)} \) for all \(a \notin \{s, t\} \).

2. If \(\lambda^{st} := (\lambda(s), \lambda(t)) \) and \(\mu^{st} := (\mu(s), \mu(t)) \), then \(\text{Contc}_{\lambda^{st}} = \text{Contc}_{\mu^{st}} \) with respect to the weight system \((m_s, m_t)\).

Let \(\lambda^{st} \) and \(\mu^{st} \) be as above and set \(l := |\lambda^{st}| = |\mu^{st}|. \) Let us consider the Ariki-Koike algebra \(\mathcal{H}_{2,l} \) of \(G(2, 1, l) \) over the Laurent polynomial ring

\[
\mathbb{Z}[U_0, U_0^{-1}, U_1, U_1^{-1}, X, X^{-1}]
\]
Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $(\chi_{\lambda})_\phi$ and $(\chi_{\mu})_\phi$ are in the same Rouquier block of $(H_{d,r})_\phi$ if and only if:

1. We have $\lambda^{(a)} = \mu^{(a)}$ for all $a \notin \{s, t\}$.

2. If $\lambda^{st} := (\lambda^{(s)}, \lambda^{(t)})$ and $\mu^{st} := (\mu^{(s)}, \mu^{(t)})$, then $\text{Contc}_{\lambda^{st}} = \text{Contc}_{\mu^{st}}$ with respect to the weight system (m_s, m_t).

Let λ^{st} and μ^{st} be as above and set $l := |\lambda^{st}| = |\mu^{st}|$. Let us consider the Ariki-Koike algebra $H_{2,l}$ of $G(2,1,l)$ over the Laurent polynomial ring

$$\mathbb{Z}[U_0, U_0^{-1}, U_1, U_1^{-1}, X, X^{-1}]$$

and the cyclotomic specialization

$$\vartheta : U_0 \mapsto q^{m_s}, U_1 \mapsto -q^{m_t}, X \mapsto q^n.$$
Proposition (C.)

Let λ, μ be two d-partitions of r. The irreducible characters $(\chi_\lambda)_\phi$ and $(\chi_\mu)_\phi$ are in the same Rouquier block of $(\mathcal{H}_{d,r})_\phi$ if and only if:

1. We have $\lambda^{(a)} = \mu^{(a)}$ for all $a \notin \{s, t\}$.
2. If $\lambda^{st} := (\lambda(s), \lambda(t))$ and $\mu^{st} := (\mu(s), \mu(t))$, then $\text{Contc}_{\lambda^{st}} = \text{Contc}_{\mu^{st}}$ with respect to the weight system (m_s, m_t).

Let λ^{st} and μ^{st} be as above and set $l := |\lambda^{st}| = |\mu^{st}|$. Let us consider the Ariki-Koike algebra $\mathcal{H}_{2,l}$ of $G(2,1,l)$ over the Laurent polynomial ring

$$\mathbb{Z}[U_0, U_0^{-1}, U_1, U_1^{-1}, X, X^{-1}]$$

and the cyclotomic specialization

$$\vartheta : U_0 \mapsto q^{m_s}, U_1 \mapsto -q^{m_t}, X \mapsto q^n.$$

By the theorem of Broué-Kim, we have $\text{Contc}_{\lambda^{st}} = \text{Contc}_{\mu^{st}}$ with respect to the weight system (m_s, m_t) if and only if the corresponding characters of $G(2,1,l)$ belong to the same Rouquier block of $(\mathcal{H}_{2,l})_\vartheta$.
Example: Let $W := G(3, 1, 2)$.
Example: Let $W := G(3, 1, 2)$. The irreducible characters of W are parametrized by the 3-partitions of 2. These are:
Example: Let $W := G(3, 1, 2)$. The irreducible characters of W are parametrized by the 3-partitions of 2. These are:

\[\lambda_{(2),0} = ((2), \emptyset, \emptyset), \quad \lambda_{(2),1} = (\emptyset, (2), \emptyset), \quad \lambda_{(2),2} = (\emptyset, \emptyset, (2)), \]
\[\lambda_{(1,1),0} = ((1, 1), \emptyset, \emptyset), \quad \lambda_{(1,1),1} = (\emptyset, (1, 1), \emptyset), \quad \lambda_{(1,1),2} = (\emptyset, \emptyset, (1, 1)), \]
\[\lambda_{\emptyset,0} = (\emptyset, (1), (1)), \quad \lambda_{\emptyset,1} = ((1), \emptyset, (1)), \quad \lambda_{\emptyset,2} = ((1), (1), \emptyset). \]
Example: Let $W := G(3, 1, 2)$. The irreducible characters of W are parametrized by the 3-partitions of 2. These are:

$$
\begin{align*}
\lambda_{(2),0} &= ((2), \emptyset, \emptyset), & \lambda_{(2),1} &= (\emptyset, (2), \emptyset), & \lambda_{(2),2} &= (\emptyset, \emptyset, (2)), \\
\lambda_{(1,1),0} &= ((1, 1), \emptyset, \emptyset), & \lambda_{(1,1),1} &= (\emptyset, (1, 1), \emptyset), & \lambda_{(1,1),2} &= (\emptyset, \emptyset, (1, 1)), \\
\lambda_{\emptyset,0} &= (\emptyset, (1), (1)), & \lambda_{\emptyset,1} &= ((1), \emptyset, (1)), & \lambda_{\emptyset,2} &= ((1), (1), \emptyset).
\end{align*}
$$

The generic Ariki-Koike algebra associated to W is the algebra $\mathcal{H}_{3,2}$ generated over the Laurent polynomial ring in 4 indeterminates

$$\mathbb{Z}[u_0, u_0^{-1}, u_1, u_1^{-1}, u_2, u_2^{-1}, x, x^{-1}]$$

by the elements s and t satisfying the relations

- $ssts = tsts$,
- $(s - u_0)(s - u_1)(s - u_2) = (t - x)(t + 1) = 0$.
Let
\[\phi : \begin{cases}
 u_j \mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\
 x \mapsto q^n
\end{cases} \]
be a cyclotomic specialization for \(H_{3,2} \).
Let
\[
\phi : \begin{cases}
 u_j \mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\
 x \mapsto q^n
\end{cases}
\]
be a cyclotomic specialization for \(\mathcal{H}_{3,2} \). The essential hyperplanes for \(W \) are:

1. \(kN + M_0 - M_1 = 0 \) for \(k \in \{-1, 0, 1\} \).
2. \(kN + M_0 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).
3. \(kN + M_1 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).

Let us take \(m_0 = 0, m_1 = 0, m_2 = 5 \) and \(n = 1 \). These integers belong only to the essential hyperplane \(M_0 - M_1 = 0 \).

Following our main result, two irreducible characters (\(\chi_{\lambda}^{\phi} \), \(\chi_{\mu}^{\phi} \)) are in the same Rouquier block of (\(H_{2,3}^{\phi} \)) if and only if:

1. \(\lambda^{(2)} = \mu^{(2)} \).
2. If \(\lambda_{01} = (\lambda^{(0)}, \lambda^{(1)}) \) and \(\mu_{01} = (\mu^{(0)}, \mu^{(1)}) \), then \(\text{Cont}_c \lambda_{01} = \text{Cont}_c \mu_{01} \) with respect to the weight system \((0, 0)\).
Let
\[\phi : \{ \begin{array}{c} u_j \mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\ x \mapsto q^n \end{array} \]
be a cyclotomic specialization for \(H_{3,2} \). The essential hyperplanes for \(W \) are:

- \(N = 0 \).
Let
\[\phi : \{ u_j \mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \]
x \mapsto q^n \]
be a cyclotomic specialization for \(\mathcal{H}_{3,2} \). The essential hyperplanes for \(W \) are:

- \(N = 0. \)
- \(kN + M_0 - M_1 = 0 \) for \(k \in \{-1, 0, 1\} \).
Let

$$
\phi : \begin{cases}
 u_j \mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\
 x \mapsto q^n
\end{cases}
$$

be a cyclotomic specialization for $H_{3,2}$. The essential hyperplanes for W are:

- $N = 0$.
- $kN + M_0 - M_1 = 0$ for $k \in \{-1, 0, 1\}$.
- $kN + M_0 - M_2 = 0$ for $k \in \{-1, 0, 1\}$.
Let
\[\phi : \begin{cases} u_j &\mapsto\zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\ x &\mapsto q^n \end{cases} \]
be a cyclotomic specialization for \(H_{3,2} \). The essential hyperplanes for \(W \) are:
- \(N = 0 \).
- \(kN + M_0 - M_1 = 0 \) for \(k \in \{-1, 0, 1\} \).
- \(kN + M_0 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).
- \(KN + M_1 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).
Let

\[\phi : \begin{cases}
 u_j \mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\
 x \mapsto q^n
\end{cases} \]

be a cyclotomic specialization for \(\mathcal{H}_{3,2} \). The essential hyperplanes for \(W \) are:

- \(N = 0 \).
- \(kN + M_0 - M_1 = 0 \) for \(k \in \{-1, 0, 1\} \).
- \(kN + M_0 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).
- \(KN + M_1 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).

Let us take \(m_0 := 0, \ m_1 := 0, \ m_2 := 5 \) and \(n := 1 \).
Let

\[
\phi : \begin{cases}
 u_j \mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\
 x \mapsto q^n
\end{cases}
\]

be a cyclotomic specialization for \(\mathcal{H}_{3,2} \). The essential hyperplanes for \(W \) are:

- \(N = 0 \).
- \(kN + M_0 - M_1 = 0 \) for \(k \in \{-1, 0, 1\} \).
- \(kN + M_0 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).
- \(KN + M_1 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).

Let us take \(m_0 := 0, \ m_1 := 0, \ m_2 := 5 \) and \(n := 1 \). These integers belong only to the essential hyperplane \(M_0 - M_1 = 0 \).
Let
\[\phi : \begin{cases} u_j &\mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\ x &\mapsto q^n \end{cases} \]
be a cyclotomic specialization for \(\mathcal{H}_{3,2} \). The essential hyperplanes for \(W \) are:

- \(N = 0 \).
- \(kN + M_0 - M_1 = 0 \) for \(k \in \{-1,0,1\} \).
- \(kN + M_0 - M_2 = 0 \) for \(k \in \{-1,0,1\} \).
- \(KN + M_1 - M_2 = 0 \) for \(k \in \{-1,0,1\} \).

Let us take \(m_0 := 0, m_1 := 0, m_2 := 5 \) and \(n := 1 \). These integers belong only to the essential hyperplane \(M_0 - M_1 = 0 \). Following our main result, two irreducible characters \((\chi_\lambda)_\phi, (\chi_\mu)_\phi \) are in the same Rouquier block of \((\mathcal{H}_{2,3})_\phi \) if and only if:
Let
\[\phi : \begin{cases} u_j \mapsto \zeta_3^j q^{m_j}, & (0 \leq j \leq 2), \\ x \mapsto q^n \end{cases} \]
be a cyclotomic specialization for \(\mathcal{H}_{3,2} \). The essential hyperplanes for \(\mathcal{W} \) are:

- \(N = 0 \).
- \(kN + M_0 - M_1 = 0 \) for \(k \in \{-1, 0, 1\} \).
- \(kN + M_0 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).
- \(kN + M_1 - M_2 = 0 \) for \(k \in \{-1, 0, 1\} \).

Let us take \(m_0 := 0, m_1 := 0, m_2 := 5 \) and \(n := 1 \). These integers belong only to the essential hyperplane \(M_0 - M_1 = 0 \). Following our main result, two irreducible characters \((\chi_\lambda)_\phi, (\chi_\mu)_\phi \) are in the same Rouquier block of \((\mathcal{H}_{2,3})_\phi \) if and only if:

1. We have \(\lambda^{(2)} = \mu^{(2)} \).
Let
\[
\phi : \begin{cases}
 u_j \mapsto \zeta_3^j q^{m_j}, (0 \leq j \leq 2), \\
 x \mapsto q^n
\end{cases}
\]

be a cyclotomic specialization for $\mathcal{H}_{3,2}$. The essential hyperplanes for W are:

- $N = 0$.
- $kN + M_0 - M_1 = 0$ for $k \in \{-1, 0, 1\}$.
- $kN + M_0 - M_2 = 0$ for $k \in \{-1, 0, 1\}$.
- $KN + M_1 - M_2 = 0$ for $k \in \{-1, 0, 1\}$.

Let us take $m_0 := 0, m_1 := 0, m_2 := 5$ and $n := 1$. These integers belong only to the essential hyperplane $M_0 - M_1 = 0$. Following our main result, two irreducible characters $(\chi_\lambda)_\phi, (\chi_\mu)_\phi$ are in the same Rouquier block of $(\mathcal{H}_{2,3})_\phi$ if and only if:

1. We have $\lambda^{(2)} = \mu^{(2)}$.
2. If $\lambda^{01} := (\lambda^{(0)}, \lambda^{(1)})$ and $\mu^{01} := (\mu^{(0)}, \mu^{(1)})$, then $\text{Contc}_{\lambda^{01}} = \text{Contc}_{\mu^{01}}$ with respect to the weight system $(0, 0)$.

Maria Chlouveraki (EPFL)
Families of characters of the imprimitive c.r.g
November 29, 2008
25 / 27
Consequently, the characters corresponding to the partitions $\lambda_{(2),2}$, $\lambda_{(1,1),2}$ and $\lambda_{(0,2)}$ are singletons.
Consequently, the characters corresponding to the partitions \(\lambda_{(2),2}, \lambda_{(1,1),2} \) and \(\lambda_{\emptyset,2} \) are singletons. Moreover, we have
Consequently, the characters corresponding to the partitions $\lambda_{(2),2}$, $\lambda_{(1,1),2}$ and $\lambda_{0,2}$ are singletons. Moreover, we have

$$B_{\lambda_{(2),0}} = \begin{pmatrix} 2 \\ 0 \end{pmatrix},$$
Consequently, the characters corresponding to the partitions $\lambda_{(2),2}$, $\lambda_{(1,1),2}$ and $\lambda_{0,2}$ are singletons. Moreover, we have

$$B_{\lambda_{(2),0}} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad B_{\lambda_{(2),1}} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$
Consequently, the characters corresponding to the partitions $\lambda_{(2),2}$, $\lambda_{(1,1),2}$ and $\lambda_{0,2}$ are singletons. Moreover, we have

\[B_{\lambda_{(2),0}} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad B_{\lambda_{(2),1}} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}. \]

\[B_{\lambda_{(1,1),0}} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \]

\[B_{\lambda_{\emptyset,0}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad B_{\lambda_{\emptyset,1}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}. \]
Consequently, the characters corresponding to the partitions $\lambda_{(2),2}$, $\lambda_{(1,1),2}$ and $\lambda_{\emptyset,2}$ are singletons. Moreover, we have

$$B_{\lambda_{(2),0}} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad B_{\lambda_{(2),1}} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}. $$

$$B_{\lambda_{(1,1),0}} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_{\lambda_{(1,1),1}} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}. $$
Consequently, the characters corresponding to the partitions $\lambda(2),2$, $\lambda(1,1),2$ and $\lambda_0,2$ are singletons. Moreover, we have

$$B_{\lambda(2),0} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad B_{\lambda(2),1} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

$$B_{\lambda(1,1),0} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_{\lambda(1,1),1} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}.$$

$$B_{\lambda_0,0} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$
Consequently, the characters corresponding to the partitions \(\lambda_{(2),2} \), \(\lambda_{(1,1),2} \) and \(\lambda_{\emptyset,2} \) are singletons. Moreover, we have

\[
B_{\lambda_{(2),0}} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad B_{\lambda_{(2),1}} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.
\]

\[
B_{\lambda_{(1,1),0}} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_{\lambda_{(1,1),1}} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}.
\]

\[
B_{\lambda_{\emptyset,0}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad B_{\lambda_{\emptyset,1}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.
\]
Consequently, the characters corresponding to the partitions $\lambda_{(2),2}$, $\lambda_{(1,1),2}$ and $\lambda_{\emptyset,2}$ are singletons. Moreover, we have

$$B_{\lambda_{(2),0}} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad B_{\lambda_{(2),1}} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

$$B_{\lambda_{(1,1),0}} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_{\lambda_{(1,1),1}} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}.$$

$$B_{\lambda_{\emptyset,0}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad B_{\lambda_{\emptyset,1}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

The Rouquier blocks of $(\mathcal{H}_{3,2})_{\phi}$ are:
Consequently, the characters corresponding to the partitions $\lambda_{(2),2}$, $\lambda_{(1,1),2}$ and $\lambda_{0,2}$ are singletons. Moreover, we have

$$B_{\lambda_{(2),0}} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \quad B_{\lambda_{(2),1}} = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$$

$$B_{\lambda_{(1,1),0}} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_{\lambda_{(1,1),1}} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}.$$

$$B_{\lambda_{0,0}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad B_{\lambda_{0,1}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

The Rouquier blocks of $(\mathcal{H}_{3,2})_\phi$ are:

$$\{ \lambda_{(2),0}, \lambda_{(2),1} \}, \{ \lambda_{(2),2} \}, \{ \lambda_{(1,1),0}, \lambda_{(1,1),1} \}, \{ \lambda_{(1,1),2} \}, \{ \lambda_{0,0}, \lambda_{0,1} \}, \{ \lambda_{0,2} \}.$$
The group $G(de, e, r)$

The group $G(de, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in μ_{de} and product of the non-zero entries in μ_d.
The group $G(de, e, r)$

The group $G(de, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in μ_{de} and product of the non-zero entries in μ_d.

- Thanks to a result by Ariki (1995), any cyclotomic Hecke algebra of $G(de, e, r)$, $r > 2$, can be viewed as a subalgebra of a cyclotomic Hecke algebra associated to $G(de, 1, r)$. Then Clifford Theory allows us to obtain the Rouquier blocks of the former from the Rouquier blocks of the latter.
The group $G(\text{de}, e, r)$

The group $G(\text{de}, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in μ_{de} and product of the non-zero entries in μ_d.

- Thanks to a result by Ariki (1995), any cyclotomic Hecke algebra of $G(\text{de}, e, r)$, $r > 2$, can be viewed as a subalgebra of a cyclotomic Hecke algebra associated to $G(\text{de}, 1, r)$. Then Clifford Theory allows us to obtain the Rouquier blocks of the former from the Rouquier blocks of the latter.

- The same holds in the case where $r = 2$ and e is odd.
The group $G(\text{de}, e, r)$

The group $G(\text{de}, e, r)$ is the group of all $r \times r$ monomial matrices with non-zero entries in μ_{de} and product of the non-zero entries in μ_d.

- Thanks to a result by Ariki (1995), any cyclotomic Hecke algebra of $G(\text{de}, e, r)$, $r > 2$, can be viewed as a subalgebra of a cyclotomic Hecke algebra associated to $G(\text{de}, 1, r)$. Then Clifford Theory allows us to obtain the Rouquier blocks of the former from the Rouquier blocks of the latter.

- The same holds in the case where $r = 2$ and e is odd.

- In the case where $r = 2$ and e is even, explicit calculations had to be made (and there is no combinatorial description of the Rouquier blocks).