# The irreducible representations of $B_{3}$ of dimension at most 5 

Eirini Chavli

Université Paris Diderot
5 July 2016

## Braids



## Braids



## The braid group $B_{3}$

## Theorem (Artin 1928)

The braid group $B_{n}$ on $n$ strands admits a presentation with generators

$$
\sigma_{1}, \ldots, \sigma_{n-1}
$$

and relations

$$
\begin{gathered}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \text { for } i=1, \ldots, n-1 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \text { for }|i-j|>1
\end{gathered}
$$

## The braid group $B_{3}$

## Theorem (Artin 1928)

The braid group $B_{n}$ on $n$ strands admits a presentation with generators

$$
\sigma_{1}, \ldots, \sigma_{n-1}
$$

and relations

$$
\begin{gathered}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \text { for } i=1, \ldots, n-1 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \text { for }|i-j|>1
\end{gathered}
$$

- For $n=1$ we have $B_{1}=1$.


## The braid group $B_{3}$

## Theorem (Artin 1928)

The braid group $B_{n}$ on $n$ strands admits a presentation with generators

$$
\sigma_{1}, \ldots, \sigma_{n-1}
$$

and relations

$$
\begin{gathered}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \text { for } i=1, \ldots, n-1 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \text { for }|i-j|>1
\end{gathered}
$$

- For $n=1$ we have $B_{1}=1$.
- For $n=2$ we have $B_{2}=\mathbb{Z}$.


## The braid group $B_{3}$

## Theorem (Artin 1928)

The braid group $B_{n}$ on $n$ strands admits a presentation with generators

$$
\sigma_{1}, \ldots, \sigma_{n-1}
$$

and relations

$$
\begin{gathered}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}, \text { for } i=1, \ldots, n-1 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, \text { for }|i-j|>1
\end{gathered}
$$

- For $n=1$ we have $B_{1}=1$.
- For $n=2$ we have $B_{2}=\mathbb{Z}$.

The first "new" example is $B_{3}$.

## The braid group $B_{3}$

$$
B_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

## The braid group $B_{3}$

$$
B_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

- $B_{3}$ is the knot group of the trefoil knot

$$
B_{3} \simeq \pi_{1}\left(\mathbb{R}^{3} / \oint\right)
$$

## The braid group $B_{3}$

$$
B_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

- $B_{3}$ is the knot group of the trefoil knot

$$
B_{3} \simeq \pi_{1}\left(\mathbb{R}^{3} / @\right)
$$

- $B_{3}$ is the universal central extension of the modular group $P S L_{2}(\mathbb{Z})$



## A classification of small dimensional irreducible representations of $B_{3}$

There is a classification from I. Tuba and H. Wenzl in 1999 of the irreducible representations of $B_{3}$ of dimension $k$ at most 5:

## A classification of small dimensional irreducible representations of $B_{3}$

There is a classification from I. Tuba and H. Wenzl in 1999 of the irreducible representations of $B_{3}$ of dimension $k$ at most 5:

If $\sigma_{1} \mapsto A, \sigma_{2} \mapsto B$ is such a representation, we have:

## A classification of small dimensional irreducible representations of $B_{3}$

There is a classification from I. Tuba and H. Wenzl in 1999 of the irreducible representations of $B_{3}$ of dimension $k$ at most 5:

If $\sigma_{1} \mapsto A, \sigma_{2} \mapsto B$ is such a representation, we have:

- $A$ and $B$ can be chosen of order triangular form.
- The coefficients of $A$ and $B$ are completely determined by the eigenvalues (for $k=2,3$ ) or by the eigenvalues and by a choice of a $k$ th root of $\operatorname{det} A$ that we call $r$ (for $k=4,5)$.
- Such irreducible representations exist if the eigenvalues do not annihilate some polynomials $P_{k}$ in eigenvalues and $r$.


## Example: The irreducible representations of dimension 3

$$
A=\left[\begin{array}{ccc}
\lambda_{3} & 0 & 0 \\
\lambda_{1} \lambda_{3}+\lambda_{2}^{2} & \lambda_{2} & 0 \\
\lambda_{2} & 1 & \lambda_{1}
\end{array}\right], B=\left[\begin{array}{ccc}
\lambda_{1} & -1 & \lambda_{2} \\
0 & \lambda_{2} & -\lambda_{1} \lambda_{3}-\lambda_{2}^{2} \\
0 & 0 & \lambda_{3}
\end{array}\right],
$$

where $\left(\lambda_{1}^{2}+\lambda_{2} \lambda_{3}\right)\left(\lambda_{2}^{2}+\lambda_{1} \lambda_{3}\right)\left(\lambda_{3}^{2}+\lambda_{1} \lambda_{2}\right) \neq 0$.

## A classification of small dimensional irreducible representations of $B_{3}$

## Questions

- What is the reason we do not expect to have similar results for any dimension beyond 5 ?


## A classification of small dimensional irreducible representations of $B_{3}$

## Questions

- What is the reason we do not expect to have similar results for any dimension beyond 5 ?
- Why are the matrices in this neat form?


## A classification of small dimensional irreducible representations of $B_{3}$

## Questions

- What is the reason we do not expect to have similar results for any dimension beyond 5 ?
- Why are the matrices in this neat form?
- What is the nature of the polynomials $P_{k}$ and why do they provide a necessary condition for a representation of this form to be irreducible?


## A classification of small dimensional irreducible representations of $B_{3}$

## Questions

- What is the reason we do not expect to have similar results for any dimension beyond 5 ?
- Why are the matrices in this neat form?
- What is the nature of the polynomials $P_{k}$ and why do they provide a necessary condition for a representation of this form to be irreducible?

We will answer these questions by recovering this classification as a consequence of the freeness conjecture for the generic Hecke algebra of the finite quotients of the braid group $B_{3}$ defined by the additional relation $\sigma_{i}^{k}=1$, for $i=1,2$.

## The finite quotients of $B_{n}$

We have $S_{n}=B_{n} /\left(\sigma_{i}^{2}\right)$

## The finite quotients of $B_{n}$

We have $S_{n}=B_{n} /\left(\sigma_{i}^{2}\right)$

## Question

When the quotient $W:=B_{n} /\left(\sigma_{i}^{k}\right)$ is finite?

## The finite quotients of $B_{n}$

We have $S_{n}=B_{n} /\left(\sigma_{i}^{2}\right)$

## Question

When the quotient $W:=B_{n} /\left(\sigma_{i}^{k}\right)$ is finite?

## Theorem (Coxeter 1957)

The quotient $W$ of the $B_{n}$ by the relations $\sigma_{i}^{k}=1$ is a finite group if and only if $\frac{1}{k}+\frac{1}{n}>\frac{1}{2}$.

## The finite quotients of $B_{n}$

We have $S_{n}=B_{n} /\left(\sigma_{i}^{2}\right)$

## Question

When the quotient $W:=B_{n} /\left(\sigma_{i}^{k}\right)$ is finite?

## Theorem (Coxeter 1957)

The quotient $W$ of the $B_{n}$ by the relations $\sigma_{i}^{k}=1$ is a finite group if and only if $\frac{1}{k}+\frac{1}{n}>\frac{1}{2}$.

- $n=1$. Then $W=\{1\}$.
- $n=2$. Then, $W=\mathbb{Z} / k \mathbb{Z}$.
- $k=2$. Then, $W=S_{n}$.


## The finite quotients of $B_{n}$

We have $S_{n}=B_{n} /\left(\sigma_{i}^{2}\right)$

## Question

When the quotient $W:=B_{n} /\left(\sigma_{i}^{k}\right)$ is finite?

## Theorem (Coxeter 1957)

The quotient $W$ of the $B_{n}$ by the relations $\sigma_{i}^{k}=1$ is a finite group if and only if $\frac{1}{k}+\frac{1}{n}>\frac{1}{2}$.

- $n=1$. Then $W=\{1\}$.
- $n=2$. Then, $W=\mathbb{Z} / k \mathbb{Z}$.
- $k=2$. Then, $W=S_{n}$.
- $n=3$ and $k=3,4,5$. Then $W=G_{4}, G_{8}, G_{16}$.
- $n=4$ and $k=3$. Then $W=G_{25}$.
- $n=5$ and $k=3$. Then $W=G_{32}$.


## The generic Hecke algebra of the finite quotients of $B_{3}$

Let $W$ a finite quotient of the braid group $B_{n}$ and $R:=\mathbb{Z}\left[a_{1}^{ \pm}, a_{2}^{ \pm} \ldots, a_{k}^{ \pm}\right]$.

## The generic Hecke algebra of the finite quotients of $B_{3}$

Let $W$ a finite quotient of the braid group $B_{n}$ and $R:=\mathbb{Z}\left[a_{1}^{ \pm}, a_{2}^{ \pm} \ldots, a_{k}^{ \pm}\right]$.

## Definition

The generic Hecke algebra $H$ of $W$ is defined as $H_{W}:=R B_{n} /\left(\sigma_{i}-a_{1}\right) \ldots\left(\sigma_{i}-a_{k}\right)$

## The generic Hecke algebra of the finite quotients of $B_{3}$

Let $W$ a finite quotient of the braid group $B_{n}$ and $R:=\mathbb{Z}\left[a_{1}^{ \pm}, a_{2}^{ \pm} \ldots, a_{k}^{ \pm}\right]$.

## Definition

The generic Hecke algebra $H$ of $W$ is defined as $H_{W}:=R B_{n} /\left(\sigma_{i}-a_{1}\right) \ldots\left(\sigma_{i}-a_{k}\right)$

Example: $G_{4}=\left\langle s_{1}, s_{2} \mid s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}, s_{i}^{3}=1\right\rangle$.

## The generic Hecke algebra of the finite quotients of $B_{3}$

Let $W$ a finite quotient of the braid group $B_{n}$ and $R:=\mathbb{Z}\left[a_{1}^{ \pm}, a_{2}^{ \pm} \ldots, a_{k}^{ \pm}\right]$.

## Definition

The generic Hecke algebra $H$ of $W$ is defined as $H_{W}:=R B_{n} /\left(\sigma_{i}-a_{1}\right) \ldots\left(\sigma_{i}-a_{k}\right)$

Example: $G_{4}=\left\langle s_{1}, s_{2} \mid s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}, s_{i}^{3}=1\right\rangle$. $H_{G_{4}}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2},\left(\sigma_{i}-a_{1}\right)\left(\sigma_{i}-a_{2}\right)\left(\sigma_{i}-a_{3}\right)=0\right\rangle$.

## The generic Hecke algebra of the finite quotients of $B_{3}$

Let $W$ a finite quotient of the braid group $B_{n}$ and $R:=\mathbb{Z}\left[a_{1}^{ \pm}, a_{2}^{ \pm} \ldots, a_{k}^{ \pm}\right]$.

## Definition

The generic Hecke algebra $H$ of $W$ is defined as $H_{W}:=R B_{n} /\left(\sigma_{i}-a_{1}\right) \ldots\left(\sigma_{i}-a_{k}\right)$

Example: $G_{4}=\left\langle s_{1}, s_{2} \mid s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}, s_{i}^{3}=1\right\rangle$. $H_{G_{4}}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2},\left(\sigma_{i}-a_{1}\right)\left(\sigma_{i}-a_{2}\right)\left(\sigma_{i}-a_{3}\right)=0\right\rangle$.

## Theorem (Broué-Malle, C., Marin)

$H_{W}$ is a free $R$-module of rank $|W|$.

## The irreducible representations of $B_{3}$ of dimension $k \leq 5$

Let $\rho: B_{3} \rightarrow G L_{k}(\mathbb{C})$ be a representation of $B_{3}$ of dimension $k \leq 5$ over $\mathbb{C}$. Let $A:=\rho\left(\sigma_{1}\right)$ and $B:=\rho\left(\sigma_{2}\right)$, with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$.

## The irreducible representations of $B_{3}$ of dimension $k \leq 5$

Let $\rho: B_{3} \rightarrow G L_{k}(\mathbb{C})$ be a representation of $B_{3}$ of dimension $k \leq 5$ over $\mathbb{C}$. Let $A:=\rho\left(\sigma_{1}\right)$ and $B:=\rho\left(\sigma_{2}\right)$, with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem of Cayley-Hamilton there is a monic polynomial $Q(X)=\left(X-\lambda_{1}\right) \ldots\left(X-\lambda_{k}\right) \in \mathbb{C}[X]$ of degree $k$ such that $Q(A)=Q(B)=0$.

## The irreducible representations of $B_{3}$ of dimension $k \leq 5$

Let $\rho: B_{3} \rightarrow G L_{k}(\mathbb{C})$ be a representation of $B_{3}$ of dimension $k \leq 5$ over $\mathbb{C}$. Let $A:=\rho\left(\sigma_{1}\right)$ and $B:=\rho\left(\sigma_{2}\right)$, with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem of Cayley-Hamilton there is a monic polynomial $Q(X)=\left(X-\lambda_{1}\right) \ldots\left(X-\lambda_{k}\right) \in \mathbb{C}[X]$ of degree $k$ such that $Q(A)=Q(B)=0$.
$\rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}\right)=\rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right),\left(\rho\left(\sigma_{i}\right)-\lambda_{1} \mathrm{I}_{k}\right) \ldots\left(\rho\left(\sigma_{i}\right)-\lambda_{k} \mathrm{I}_{k}\right)=0$.

## The irreducible representations of $B_{3}$ of dimension $k \leq 5$

Let $\rho: B_{3} \rightarrow G L_{k}(\mathbb{C})$ be a representation of $B_{3}$ of dimension $k \leq 5$ over $\mathbb{C}$. Let $A:=\rho\left(\sigma_{1}\right)$ and $B:=\rho\left(\sigma_{2}\right)$, with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem of Cayley-Hamilton there is a monic polynomial $Q(X)=\left(X-\lambda_{1}\right) \ldots\left(X-\lambda_{k}\right) \in \mathbb{C}[X]$ of degree $k$ such that $Q(A)=Q(B)=0$.
$\rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}\right)=\rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right),\left(\rho\left(\sigma_{i}\right)-\lambda_{1} \mathrm{I}_{k}\right) \ldots\left(\rho\left(\sigma_{i}\right)-\lambda_{k} \mathrm{I}_{k}\right)=0$.
Let $\boldsymbol{H}_{k}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2},\left(\sigma_{i}-a_{1}\right) \ldots\left(\sigma_{i}-a_{k}\right)=0\right\rangle$ be the Hecke algebra of $S_{3}, G_{4}, G_{8}$ and $G_{16}$ respectively over the ring $R_{k}:=\mathbb{Z}\left[a_{1}^{ \pm}, \ldots, a_{k}^{ \pm}\right]$.

## The irreducible representations of $B_{3}$ of dimension $k \leq 5$

Let $\rho: B_{3} \rightarrow G L_{k}(\mathbb{C})$ be a representation of $B_{3}$ of dimension $k \leq 5$ over $\mathbb{C}$. Let $A:=\rho\left(\sigma_{1}\right)$ and $B:=\rho\left(\sigma_{2}\right)$, with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem of Cayley-Hamilton there is a monic polynomial $Q(X)=\left(X-\lambda_{1}\right) \ldots\left(X-\lambda_{k}\right) \in \mathbb{C}[X]$ of degree $k$ such that $Q(A)=Q(B)=0$.
$\rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}\right)=\rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right),\left(\rho\left(\sigma_{i}\right)-\lambda_{1} \mathrm{I}_{k}\right) \ldots\left(\rho\left(\sigma_{i}\right)-\lambda_{k} \mathrm{I}_{k}\right)=0$.
Let $\boldsymbol{H}_{k}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2},\left(\sigma_{i}-a_{1}\right) \ldots\left(\sigma_{i}-a_{k}\right)=0\right\rangle$ be the Hecke algebra of $S_{3}, G_{4}, G_{8}$ and $G_{16}$ respectively over the ring $R_{k}:=\mathbb{Z}\left[a_{1}^{ \pm}, \ldots, a_{k}^{ \pm}\right]$.

Let $\theta: R_{k} \rightarrow \mathbb{C}$ be a specialization of $H_{k}$ defined by $a_{i} \mapsto \lambda_{i}$.

## The irreducible representations of $B_{3}$ of dimension $k \leq 5$

Let $\rho: B_{3} \rightarrow G L_{k}(\mathbb{C})$ be a representation of $B_{3}$ of dimension $k \leq 5$ over $\mathbb{C}$. Let $A:=\rho\left(\sigma_{1}\right)$ and $B:=\rho\left(\sigma_{2}\right)$, with eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem of Cayley-Hamilton there is a monic polynomial $Q(X)=\left(X-\lambda_{1}\right) \ldots\left(X-\lambda_{k}\right) \in \mathbb{C}[X]$ of degree $k$ such that $Q(A)=Q(B)=0$.
$\rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}\right)=\rho\left(\sigma_{2}\right) \rho\left(\sigma_{1}\right) \rho\left(\sigma_{2}\right),\left(\rho\left(\sigma_{i}\right)-\lambda_{1} \mathrm{I}_{k}\right) \ldots\left(\rho\left(\sigma_{i}\right)-\lambda_{k} \mathrm{I}_{k}\right)=0$.
Let $\boldsymbol{H}_{k}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2},\left(\sigma_{i}-a_{1}\right) \ldots\left(\sigma_{i}-a_{k}\right)=0\right\rangle$ be the Hecke algebra of $S_{3}, G_{4}, G_{8}$ and $G_{16}$ respectively over the ring $R_{k}:=\mathbb{Z}\left[a_{1}^{ \pm}, \ldots, a_{k}^{ \pm}\right]$.

Let $\theta: R_{k} \rightarrow \mathbb{C}$ be a specialization of $H_{k}$ defined by $a_{i} \mapsto \lambda_{i}$.
We only need to describe the irreducible $\mathbb{C} H_{k}:=H_{k} \otimes_{\theta} \mathbb{C}$-modules of dimension $k$.

## The decomposition map

Assumption<br>$H_{k}$ is a symmetric algebra,

## The decomposition map

## Assumption

$H_{k}$ is a symmetric algebra, i.e. there is a linear map $t: H_{k} \rightarrow R_{k}$ such that:

## The decomposition map

## Assumption

$H_{k}$ is a symmetric algebra, i.e. there is a linear map $t: H_{k} \rightarrow R_{k}$ such that:

- $t$ is a trace function, i.e.


## The decomposition map

## Assumption

$H_{k}$ is a symmetric algebra, i.e. there is a linear map $t: H_{k} \rightarrow R_{k}$ such that:

- $t$ is a trace function, i.e. $t(a b)=t(b a)$, for all $a, b \in H_{k}$.


## The decomposition map

## Assumption

$H_{k}$ is a symmetric algebra, i.e. there is a linear map $t: H_{k} \rightarrow R_{k}$ such that:

- $t$ is a trace function, i.e. $t(a b)=t(b a)$, for all $a, b \in H_{k}$.
- The bilinear form $H_{k} \times H_{k} \rightarrow R_{k},\left(a a^{\prime} \mapsto t\left(a a^{\prime}\right)\right)$ is non-degenerate.


## The decomposition map

## Assumption

$H_{k}$ is a symmetric algebra, i.e. there is a linear map $t: H_{k} \rightarrow R_{k}$ such that:

- $t$ is a trace function, i.e. $t(a b)=t(b a)$, for all $a, b \in H_{k}$.
- The bilinear form $H_{k} \times H_{k} \rightarrow R_{k},\left(a a^{\prime} \mapsto t\left(a a^{\prime}\right)\right)$ is non-degenerate.


## Theorem (Malle 1999)

There is a field $K \supset R_{k}$ such that $K H_{k}:=H_{k} \otimes_{R_{k}} K$ is split semisimple.

## The decomposition map

## Assumption

$H_{k}$ is a symmetric algebra, i.e. there is a linear map $t: H_{k} \rightarrow R_{k}$ such that:

- $t$ is a trace function, i.e. $t(a b)=t(b a)$, for all $a, b \in H_{k}$.
- The bilinear form $H_{k} \times H_{k} \rightarrow R_{k},\left(a a^{\prime} \mapsto t\left(a a^{\prime}\right)\right)$ is non-degenerate.


## Theorem (Malle 1999)

There is a field $K \supset R_{k}$ such that $K H_{k}:=H_{k} \otimes_{R_{k}} K$ is split semisimple.

## Theorem (Geck 1990)

$$
t=\sum_{\chi \in \operatorname{lrr}\left(K H_{k}\right)} \frac{1}{s_{\chi}} \chi
$$

## The decomposition map

## Assumption

$H_{k}$ is a symmetric algebra, i.e. there is a linear map $t: H_{k} \rightarrow R_{k}$ such that:

- $t$ is a trace function, i.e. $t(a b)=t(b a)$, for all $a, b \in H_{k}$.
- The bilinear form $H_{k} \times H_{k} \rightarrow R_{k},\left(a a^{\prime} \mapsto t\left(a a^{\prime}\right)\right)$ is non-degenerate.


## Theorem (Malle 1999)

There is a field $K \supset R_{k}$ such that $K H_{k}:=H_{k} \otimes_{R_{k}} K$ is split semisimple.

## Theorem (Geck 1990)

$$
t=\sum_{\chi \in \operatorname{lrr}\left(K H_{k}\right)} \frac{1}{s_{\chi}} \chi,
$$

where $s_{\chi}$ is the Schur element of $\chi$ with respect to $t$.

## The decomposition map

Let $R_{0}\left(K H_{k}\right)$ be the Grothendieck group of finite-dimensional $K H_{k}$-modules.

Let $R_{0}^{+}\left(K H_{k}\right)$ be the subset of $R_{0}\left(K H_{k}\right)$ consisting of elements [ $V$ ], where $V$ is a finite-dimensional $K H_{k}$-module.

We can define the decomposition map $d_{\theta}$ associated to $\theta$.

$$
R_{0}^{+}\left(\mathrm{KH}_{k}\right) \xrightarrow{d_{\theta}} R_{0}^{+}\left(\mathbb{C} \mathrm{H}_{k}\right)
$$

## The decomposition map

Let $R_{0}\left(K H_{k}\right)$ be the Grothendieck group of finite-dimensional $K H_{k}$-modules.

Let $R_{0}^{+}\left(K H_{k}\right)$ be the subset of $R_{0}\left(K H_{k}\right)$ consisting of elements [ $V$ ], where $V$ is a finite-dimensional $K H_{k}$-module.

We can define the decomposition map $d_{\theta}$ associated to $\theta$.

$$
R_{0}^{+}\left(K H_{k}\right) \xrightarrow{d_{\theta}} R_{0}^{+}\left(\mathbb{C} H_{k}\right)
$$

Let $S$ be an irreducible $k$-dimensional $\mathbb{C} H_{k}$ module.

## The decomposition map

Let $R_{0}\left(K H_{k}\right)$ be the Grothendieck group of finite-dimensional $K H_{k}$-modules.

Let $R_{0}^{+}\left(K H_{k}\right)$ be the subset of $R_{0}\left(K H_{k}\right)$ consisting of elements [ $V$ ], where $V$ is a finite-dimensional $K H_{k}$-module.

We can define the decomposition map $d_{\theta}$ associated to $\theta$.

$$
R_{0}^{+}\left(\mathrm{KH}_{k}\right) \xrightarrow{d_{\theta}} R_{0}^{+}\left(\mathbb{C} H_{k}\right)
$$

Let $S$ be an irreducible $k$-dimensional $\mathbb{C} H_{k}$ module.

## Proposition (C. 2014)

There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

## The decomposition matrix

The corresponding decomposition matrix is the $\operatorname{Irr}\left(K H_{k}\right) \times \operatorname{Irr}\left(\mathbb{C} H_{k}\right)$ matrix $\left(d_{\chi \phi}\right)$ with non-negative integer entries such that $d_{\theta}\left(\left[V_{\chi}\right]\right)=\sum_{\phi} d_{\chi \phi}\left[V_{\phi}^{\prime}\right]$.

## The decomposition matrix

The corresponding decomposition matrix is the $\operatorname{Irr}\left(K H_{k}\right) \times \operatorname{Irr}\left(\mathbb{C} H_{k}\right)$ matrix $\left(d_{\chi \phi}\right)$ with non-negative integer entries such that $d_{\theta}\left(\left[V_{\chi}\right]\right)=\sum_{\phi} d_{\chi \phi}\left[V_{\phi}^{\prime}\right]$.


## The decomposition matrix

The corresponding decomposition matrix is the $\operatorname{Irr}\left(K H_{k}\right) \times \operatorname{Irr}\left(\mathbb{C} H_{k}\right)$ matrix $\left(d_{\chi \phi}\right)$ with non-negative integer entries such that $d_{\theta}\left(\left[V_{\chi}\right]\right)=\sum_{\phi} d_{\chi \phi}\left[V_{\phi}^{\prime}\right]$.


## The decomposition matrix

The corresponding decomposition matrix is the $\operatorname{Irr}\left(K H_{k}\right) \times \operatorname{Irr}\left(\mathbb{C} H_{k}\right)$ matrix $\left(d_{\chi \phi}\right)$ with non-negative integer entries such that $d_{\theta}\left(\left[V_{\chi}\right]\right)=\sum_{\phi} d_{\chi \phi}\left[V_{\phi}^{\prime}\right]$.


$$
d_{\theta}\left(\left[V_{\chi_{i}}\right]\right)=a_{1}\left[V_{\phi_{1}}^{\prime}\right]+a_{2}\left[V_{\phi_{2}}^{\prime}\right]+\cdots+a_{n}\left[V_{\phi_{n}}^{\prime}\right]
$$

## The decomposition matrix

The corresponding decomposition matrix is the $\operatorname{Irr}\left(K H_{k}\right) \times \operatorname{Irr}\left(\mathbb{C} H_{k}\right)$ matrix $\left(d_{\chi \phi}\right)$ with non-negative integer entries such that $d_{\theta}\left(\left[V_{\chi}\right]\right)=\sum_{\phi} d_{\chi \phi}\left[V_{\phi}^{\prime}\right]$.

$$
\begin{gathered}
\vdots \\
\chi_{i} \\
\vdots
\end{gathered}\left(\begin{array}{llll}
\phi_{1} & \phi_{2} & \cdots & \phi_{n} \\
a_{1} & a_{2} & \cdots & a_{n} \\
& & &
\end{array}\right)
$$

## The decomposition matrix

The corresponding decomposition matrix is the $\operatorname{Irr}\left(K H_{k}\right) \times \operatorname{Irr}\left(\mathbb{C} H_{k}\right)$ matrix $\left(d_{\chi \phi}\right)$ with non-negative integer entries such that $d_{\theta}\left(\left[V_{\chi}\right]\right)=\sum_{\phi} d_{\chi \phi}\left[V_{\phi}^{\prime}\right]$.

$$
\begin{gathered}
\vdots \\
\vdots \\
\chi_{i}\left(\begin{array}{llll}
\phi_{1} & \phi_{2} & \cdots & \phi_{n} \\
\vdots & & & \\
a_{1} & a_{2} & \ldots & a_{n} \\
& & &
\end{array}\right) \\
d_{\theta}\left(\left[V_{\chi_{i}}\right]\right)=a_{1}\left[V_{\phi_{1}}^{\prime}\right]+a_{2}\left[V_{\phi_{2}}^{\prime}\right]+\cdots+a_{n}\left[V_{\phi_{n}}^{\prime}\right]
\end{gathered}
$$

This matrix records in which way the irreducible representations of the semisimple algebra $K H_{k}$ break up into irreducible representations of $\mathbb{C} H_{k}$.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=2$.


## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=2$.

$$
\begin{array}{ccc}
\cdots & \phi_{S} & \cdots \\
\left(\begin{array}{lll} 
& & \\
& &
\end{array}\right)
\end{array}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=2$.

$$
\left(\begin{array}{ccc}
\cdots & \phi_{S} & \cdots \\
& 0 & \\
& 0 & \\
& &
\end{array}\right) \begin{aligned}
& \chi_{1,1} \\
& \chi_{1,2} \\
& \chi_{2,1}
\end{aligned}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=2$.

$$
\begin{gathered}
\cdots \\
\left(\begin{array}{ccc}
\phi_{S} & \cdots \\
& 0 & \\
& 0 & \\
0 & 1 & 0
\end{array}\right)^{\chi_{1,1}} \begin{array}{l}
\chi_{1,1} \\
\chi_{1,2} \\
\chi_{2,1}
\end{array}
\end{gathered}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=2$.

$$
\left(\begin{array}{lll} 
& 0 & \\
& 0 & \\
0 & 1 & 0
\end{array}\right)^{\chi_{1,1}} \begin{aligned}
& \chi_{1,2} \\
& \chi_{2,1}
\end{aligned}
$$

Then, $d_{\theta}([M])=[S]$, where $M$ is the 2-dimensional $K H_{2}$ module.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=2$.

$$
\left(\begin{array}{lll} 
& 0 & \\
& 0 & \\
0 & 1 & 0
\end{array}\right) \begin{aligned}
& \chi_{1,1} \\
& \chi_{1,2} \\
& \chi_{2,1}
\end{aligned}
$$

Then, $d_{\theta}([M])=[S]$, where $M$ is the 2-dimensional $K H_{2}$ module. Moreover, $\theta\left(s_{\chi 2,1}\right) \neq 0$.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=3$.

$$
\left(\begin{array}{lll} 
& 0 & \\
& 0 & \\
& 0 & \\
& 0 & \\
& 0 & \\
& 0 & \\
0 & 1 & 0
\end{array}\right) \begin{aligned}
& \chi_{1,1} \\
& \chi_{1,2} \\
& \chi_{1,3} \\
& \chi_{2,1} \\
& \chi_{2,2} \\
& \chi_{2,3} \\
& \chi_{3,1}
\end{aligned}
$$

Then, $d_{\theta}([M])=[S]$, where $M$ is the 3 -dimensional $K H_{3}$ module. Moreover, $\theta\left(s_{\chi_{3,1}}\right) \neq 0$.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=4$.

$$
\begin{gathered}
\cdots \\
\left(\begin{array}{ccc}
\phi_{S} & \cdots \\
\\
& 0 & \\
& 0 & \\
& 0 & \\
& & \\
& &
\end{array} \begin{array}{l} 
\\
\\
\\
\\
\\
\\
\chi_{1, i} \\
\chi_{2, j} \\
\chi_{3, k} \\
\chi_{4,2}
\end{array}\right.
\end{gathered}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=4$.

$$
\begin{gathered}
\cdots \\
\left(\begin{array}{ccc}
\phi_{S} & \cdots \\
& 0 & \cdots \\
& 0 & \\
& 0 & \\
0 & 1 & 0
\end{array}\right) \begin{array}{l}
\chi_{1, i} \\
\chi_{2, j} \\
\chi_{3,1} \\
\chi_{4,1} \\
\chi_{4,2}
\end{array}
\end{gathered}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=4$.

$$
\begin{gathered}
\cdots \\
\left(\begin{array}{ccc}
\phi_{S} & \cdots & \\
& 0 & \cdots \\
& 0 & \\
& 0 & \\
& 0 & \\
0 & 1 & 0
\end{array}\right) \begin{array}{l}
\chi_{1, i} \\
\chi_{2, j} \\
\chi_{3,1} \\
\chi_{4,1} \\
\chi_{4,2}
\end{array}
\end{gathered}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=4$.

$$
\begin{gathered}
\cdots \\
\left(\begin{array}{ccc}
\phi_{S} & \cdots \\
& 0 & \\
& 0 & \\
& 0 & \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right) \begin{array}{l}
\chi_{1, i} \\
\chi_{2, j} \\
\chi_{3,1} \\
\chi_{4,1} \\
\chi_{4,2}
\end{array}
\end{gathered}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=4$.

$$
\begin{gathered}
\cdots \\
\left(\begin{array}{ccc}
\boldsymbol{S} & \cdots \\
\\
& 0 & \cdots \\
& 0 & \\
& 0 & \\
& 0 & \\
0 & 1 & 0
\end{array}\right) \begin{array}{l}
\chi_{1, i} \\
\chi_{2, j} \\
\chi_{3, l} \\
\chi_{4, a} \\
\chi_{4, b}
\end{array}
\end{gathered}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=4$.

$$
\begin{gathered}
\cdots \\
\left(\begin{array}{ccc}
\phi_{S} & \cdots \\
\\
& 0 & \cdots \\
& 0 & \\
& 0 & \\
& 0 & \\
0 & 1 & 0
\end{array}\right) \begin{array}{l}
\chi_{1, i} \\
\chi_{2, j} \\
\chi_{3, l} \\
\chi_{4, a} \\
\chi_{4, b}
\end{array}
\end{gathered}
$$

Then, $d_{\theta}([M])=[S]$, where $M$ is one of the two 4-dimensional $K H_{4}$ modules.
Moreover, $\theta\left(s_{\chi_{4, b}}\right) \neq 0$.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=5$.

$$
\left(\begin{array}{ccc}
\cdots & \phi_{S} & \cdots \\
& 0 & \cdots \\
& \vdots & \\
& 0 & \\
& &
\end{array}\right)_{\begin{array}{c}
\chi_{5, i} \\
\\
\\
\\
\end{array}}
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$. There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=5$.

$$
\left.\begin{array}{c}
\cdots \\
\phi_{S} \\
\\
\\
\\
\\
\\
\\
\\
0 \\
0 \\
0
\end{array}\right]
$$

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $\mathbb{C}(\mathbf{v}) H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=5$.

$$
\left(\begin{array}{ccc}
\phi_{\jmath} & \phi_{S} & \cdots \\
& \vdots & \\
& 0 & \\
1 & 1 & 0
\end{array}\right)_{\chi_{6, j, j}}
$$

$J$ is a 1-dimensional $K H_{5}$-module.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $\mathbb{C}(\mathbf{v}) H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=5$.

$$
\left(\begin{array}{ccc}
\phi_{J} & \phi_{s} & \cdots \\
& \vdots & \\
& 0 & \\
1 & 1 & 0
\end{array}\right)^{\chi_{1}}
$$

$J$ is a 1 -dimensional $K H_{5}$-module.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $\mathbb{C}(\mathbf{v}) H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=5$.

$$
\left(\begin{array}{ccc}
\phi_{J} & \phi_{s} & \cdots \\
& \vdots & \\
& 0 & \\
1 & 1 & 0
\end{array}\right)^{\chi_{1}}
$$

$J$ is a 1-dimensional $K H_{5}$-module.
We assume that $\operatorname{det} A \neq-\lambda_{i}^{6} \lambda_{j}^{-1}$.

## The irreducible representations of $B_{3}$ of dimension $k$

Let $S$ be an irreducible $\mathbb{C} H_{k}$-module of dimension $k$.
There is an irreducible $K H_{k}$-module $M$ such that $d_{\theta}([M])=[S]+[J]$, where $J$ is an $\mathbb{C} H_{k}$-module.

- $k=5$.

$$
\left(\begin{array}{ccc}
\cdots & \phi_{S} & \cdots \\
& 0 & \\
& \vdots & \\
& 0 & \\
0 & 1 & 0 \\
& 0 &
\end{array}\right)_{\chi_{5, i}}
$$

Then, $d_{\theta}([M])=[S]$, where $M$ is one of the five 5-dimensional $K H_{5}$ modules.
Moreover, $\theta\left(s_{\chi_{5, i}}\right) \neq 0$.

## Last slide

## Thank You!



