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Abstract. S-graphs were introduced to study the Kashiwara B(∞) crystal. They
have some remarkable properties which make them of interest in their own right.
These are described below together with some hints as to their eventual application
to B(∞).

1. Introduction

Formally the Kashiwara B(∞) crystal [7] does no more than parameterize a basis
of a Verma module. Yet it has a very tight combinatorial structure which results
in a parametrization of the simple highest weight modules as well giving a way to
determine their tensor product decomposition.
B(∞) admits a purely combinatorial description using the Littelmann path model

[9]. This has the advantage of being valid for any Kac-Moody algebra g, not just
one which is symmetrizable. Remarkably the mysterious Kashiwara functions which
determine B(∞) appear naturally via concatenation of paths.

From the above one may extend Kashiwara duality [8] on B(∞) to all Kac-Moody
algebras [3]. Following this it is natural to introduce “dual Kashiwara” functions.
Their interest is that they can determine B(∞) rather explicitly.

Since the Kashiwara functions are linear it is natural to ask if B(∞) can be pre-
sented as a polyhedral set. This has no known representational interpretation, rather
it is a hard question which simply demands an answer. A first attempt was made
by Nakashima and Zelevinsky [11] but unfortunately relied on a conjecture which
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almost never holds [10]. Then a beautiful and rather explicit answer to this ques-
tion was given by Gleizer and Postnikov for g simple of type A in [2] using wiring
diagrams. They viewed their result as an extension of the Littlewood-Richardson
rule for tensor product decomposition. Further to this Berenstein and Zelevinsky
[1] established that B(∞) is polyhedral when g is semisimple, equivalently when the
Weyl group W is finite. This was achieved using i-trails (which we call simply, trails)
in the fundamental modules. A disadvantage of this is that trails are not combina-
torially defined and almost impossible to determine (at present). These authors also
described dual Kashiwara functions [1, Thm. 3.9]; but this used manipulations which
are not possible when W is infinite.

The work described here is based on the fact that the dual Kashiwara functions
are determined by invariance properties under the action of the Kashiwara operators.
This leads to the notion of an S-graph ultimately associated to a simple root α.

A giant S-graph is then proposed which for each simple root αs must be a disjoint
union of S-graphs pertaining to that root, barring one distinguished vertex itself
associated to a fixed simple root αt. Then the vertices of this giant S-graph define
the set of dual Kashiwara functions associated to αt. Conjecturally the set of trails in
the fundamental module defined by αt give functions which form the set of integral
points of the convex hull of those obtained from the giant S-graph associated to
αt. So far this has been shown in some special cases and whenever the fundamental
module is minuscule.

Acknowlegements. Part of this work was carried in conjunction with P. Lamprou
and S. Zelikson.

2. Definitions

2.1. S-graphs. Fix a positive integer n and set N̂ = {1, 2, . . . , n + 1}. Let G be a

graph whose vertices are labelled by N̂ , that is to say we have a map from the set
V (G) of vertices of G to N̂ . For all k ∈ N̂ , let V k(G) denote its pre-image in V (G).

The essence of an S-graph is that for each pair v ∈ V (G), k ∈ N̂ , there exists
v′ ∈ V k(G) and an ordered path from v to v′.

Constructing S-graphs should be a question of general interest. However if |V (G)|
is finite an obvious difficulty arises if we define an ordered path by aligning arrows
on edges. Instead we set N = {1, 2, . . . , n} and assign to each edge a non-negative
integer ck : k ∈ N and require that the ck increase along an ordered path. This is
slightly weaker condition that can be satisfied even if |V (G)| = 2.

2.2. Evaluation. A key property we require of our S-graphs is that they admit
evaluation. This means that to each v ∈ V (G) we may attach a function zv such
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that for all v ∈ V k(G), v′ ∈ V `(G) joined by edge with label cs one has

zv − zv′ = cs(r
k − r`). (1)

Here the rk : k ∈ N̂ are linearly independent functions, ultimately the Kashiwara
functions attached to a fixed simple root αt. The coefficients cs : s ∈ N are typically
multiplicities of a simple root in a positive root.

2.3. The Distinguished Element. An S-graph is required to be connected, so
then the set zv : v ∈ V (G) is determined by specifying zv at one vertex vh.

We specify vh as follows. Call a pointed chain C a subset vn+1, vn, . . . , v1 of vertices
of G such that vi ∈ V i(G) and vi+1, vi are joined by the label ci. An S-graph is
required to admit a unique pointed chain and we take vh to be vn+1. Ultimately zvh
is determined by the way the S-graph fits into the giant S-graph. For the present it
can just be taken to be the zero function.

2.4. Triads. We impose on an S-graph that vertices with the same label cannot be
joined by an edge and that different edges to a given vertex must carry different
labels. Then for n = 1 there is one connected labelled graph possible and it is indeed
an S-graph. For n = 2, there are two S-graphs possible. They are chains with four
vertices (a, b, c, d) with labels on the edges (a, b), (c, d) coinciding and having a value
less than the label on the edge (b, c). In addition the vertices a, d have the same
label. We call such a subgraph of an S-graph a “triad”. In general we require that
the ordering on cs; s ∈ N respects the triads.

2.5. The Canonical S-graphs. Despite all the tight interlocking conditions we
have imposed on S-graphs, there can be several non-isomorphic S-graphs [6, 7.3]
for n ≥ 3 and a given ordering on the set cs : s ∈ N . Yet for such a choice
there is a canonical S-graph determined as a subgraph of a graph Ĝ whose vertices
are equivalences classes of tableaux with n+ 1 columns satisfying certain boundary
conditions. The coefficients cs : s ∈ N are inserted into the blocks of the tableaux
in a manner which permits the functions zv : v ∈ V (Ĝ) to be read off and to be

independent of the choice of representative. Moreover G(c) can be read off from Ĝ
just from the structure of the latter as a labelled graph [6, Thm. 7.2].

This combinatorial structure has the interesting (and unexpected) feature that

the cardinality of V (Ĝ) is just the Catalan number Cn+1, recalling here that Cn :=
1

n+1

(
2n
n

)
. As far as we know V (Ĝ) is a new Catalan set (that is to say a set whose

cardinality is a Catalan number). Moreover the graph Ĝ seems to be quite different
to other graphs whose vertices form Catalan sets [6, 7.4.2].

To some extent Ĝ is irrelevant since the canonical S-sets may be constructed quite
independently by what we call binary fusion [4, Sect. 7].
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3. Binary Fusion

3.1. Fix a total ordering on cs : s ∈ N lifting the natural order and denote this
ordered set simply by c. We construct the canonical S-graph G(c) inductively. Here
we regard s ∈ N rather than cs as the label on edges.

Let cs be the unique maximal element of c and set c− := c \ {cs} with its induced

order. View N \ {s} (resp. N̂ \ {cs}) as {1, 2, . . . , n − 1} (resp. {1, 2, . . . , n}) by
closing up gaps. Assume that G(c−) has been constructed.

Define new graphs G+, G− isomorphic to G(c) as unlabelled graphs. Let G+ be the
labelled graph obtained from G(c−) by leaving the labels in [1, s− 1] unchanged and
increasing the labels in [s, n] by 1. Then G− is defined through the given unlabelled

graph isomorphism ϕ : G+ ∼→ G−, required to fix all labels with the exception that
ϕ(v) ∈ V s(G−) whenever v ∈ V s+1(G+).

Define G(c) to be the union of G+, G− in which each vertex v ∈ V s+1(G+) is joined
to ϕ(v) by an edge with label s.

Theorem. G(c) is an S-graph.

Remarks. This was shown in [4, Sect. 7]. The direct proof of the evaluation
property is due to P. Lamprou. In [4, Thm. 8.5], it was shown that G(c) is a

subgraph of Ĝ. In [6, Sect. 7] it is shown that G(c) is the unique S-graph of

Ĝ attached to (the totally ordered set) c. In [4, Thm. 8.6] it is shown how the
properties of an S-graph can lead to the invariance properties of an S-set required
for the construction of dual Kashiwara functions.

3.2. Hypercubes and Simplexes. One may check that G(c) has the structure
of a hypercube with some edges missing, indeed exactly those edges which would
otherwise join vertices having the same index.

Call Z(c) := {zv}v∈V (G(c) an S-set. It is said to be of type t ∈ I if the Kashiwara
functions appearing in (1) are of type t - that is to say rk = rkt in the notation of 5.1.

The elements of Z(c) are pairwise distinct if and only if the cs : s ∈ N are non-
zero and pairwise distinct. In [6, 5.8] it is shown this property may be preserved by
collapsing G(c) in a well-defined fashion. Basically triads become triangles. In the
most extreme case when the coefficients are non-zero but all equal, all the hypercubes
degenerate to the n simplex with edges labelled by the common coefficient. This
construction is used to show [6, 5.8] that Z(c) is independent of the lifting of the
natural order on {cs}s∈N .

The number of canonical S-graphs for each n is smaller than n! because some of
the labelled graphs G(c) may be isomorphic. In fact the number of isomorphism
classes is the Catalan number Cn, which hence appears for a second time [6, Lemma
6.7].
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It is obvious from the binary fusion construction that |V i(G(c)| : i ∈ N̂ is always a

power of 2. On the other hand |V i(Ĝ)| = Cn+1−iCi, in particular V n(Ĝ) is a Catalan
set [6, 3.1].

4. The Convexity Property

There is a convex set associated to the (canonical) S-set Z(c).
Observe that we have two linear order relations on N . The first is the natural

order <. The second ≺ is obtained by a lifting of the natural order on the coefficients
cs : s ∈ N .

Define si : i ∈ N with the property that s1 ≺ s2 ≺ . . . ≺ sn. Relabel Nk := {si}ki=1

as {ti}ki=1 so that t1 < t2 < . . . < tk. This operation may be viewed as follows. Let sn
be the unique largest element of N with respect to ≺. Delete sn where it appears in
N given its natural order and close up the gap, so that N becomes {1, 2, . . . , n− 1}.
Then repeat.

Define K(c) = {c′k}k∈N viewed as a subset of Qn by

0 ≤ c′k ≤ ck, (2)

c′ti+1
− c′ti ≥ min(0, cti+1

− cti). (3)

One may check that K(c) is a convex subset of Qn.
It is shown in [5] that

Theorem. Z(c) is the set of extremal points of K(c).

5. Giant S-graphs

5.1. The Kashiwara B(∞) Crystal. We follow the construction of the Kashiwara
B(∞) crystal as presented in [3, Sect. 2].

Let I denote the set of labels of the simple roots of g. Fix a semi-infinite sequence
J = (. . . , ij, ij−1, . . . , i1) with ij ∈ I corresponding to successive reduced decomposi-
tions of Weyl group elements.

Define BJ to be N|J |, where the jth copy of N is the elementary crystal (see [3, 2.4]).
Then BJ acquires a crystal structure where the Kashiwara operations are described
through the Kashiwara functions rkt : t ∈ I, k ∈ N+ [3, 2.3.2]. Let b∞ denote the
element of BJ in which all entries are zero and BJ(∞) the subcrystal of BJ generated
by b∞. It is dependent on J as a subset of BJ viewed as N∞, but independent of J as
a crystal (result due to Kashiwara in the symmetrizable case and proved in general
in [3, 2.5]).

The crystal B(∞) admits a duality operation ? (result due to Kashiwara in the
symmetrizable case [7] and proved in general in [3, 2.5.25]). This allows one to define
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functions ε?t : t ∈ I on BJ(∞). One seeks to write ε?t (b) in the form

ε?t (b) = max
z∈Zt

z(b),∀b ∈ BJ(∞), (4)

where the z(b) are linear functions on BJ . If this holds then BJ(∞) must be a
polyhedral subset of BJ , that is given by linear inequalities which moreover can be
obtained by a simple algorithm involving the functions in the Zt : t ∈ I.

We regard Zt as the set of dual Kashiwara functions associated to t ∈ I eventually
eliminating any redundancies so that Zt is canonically determined by (4).

A basic premise is that the elements of Zt can be expressed as differences of
Kashiwara functions. To this end recall [3, 2.2.2] that one may assign a weight wt(b)
to each element b ∈ BJ , let α∨t denote the coroot defined by t ∈ I and define the
zeroth Kashiwara function r0t by r0t (b) = −α∨t (wt(b)), for all b ∈ BJ . Set z1t = r0t −r1t .

5.2. Giant S-sets.

(∗). Fix t ∈ I. A giant S-set of type t is a set Zt which for all s ∈ I \ {t}, is a
disjoint union of S sets of type s and such that Zt \ {z1t } is a disjoint union of S-sets
of type t.

A giant S-graph (of type t) is the graph whose vertices are Zt and whose edges
are those obtained by the S-graphs defined by the various decompositions of Zt into
S-sets.

Theorem. If Zt is a giant S-set of type t, then (4) holds.

5.3. Trails. For small cases one can inductively construct a giant S-set of type t
starting from z1t by using the S-sets defined in Section 3 and then verifying property
(∗). However to show that this works in general is an extremely complex combinato-
rial problem. One needs in effect a “model” for the functions lying in a giant S-set.
All we have at present is the notion of a trail and a dictionary linking trails to linear
functions on BJ .

Let $t be the fundamental weight defined by t ∈ I and V (−$t). Let es be the
simple root vector corresponding to s ∈ I.

A trail K is a sequence of weight vectors vj ∈ V (−$t) : j ∈ J such that vj+1 is a
power of eij applied to vj, satisfying certain boundary conditions.

It is not at all easy to determine the trails in V (−$t). A basic premise is that
trails are compatible with adjoining “faces”. The latter effect the transition described
in Eq. (1). Its proof requires a better understanding of Demazure submodules
associated to V (−$t). Ultimately it truth means that the set of all trails has a
combinatorial description.
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In the case when V (−$t) is minuscule, the trails in it are easy to describe and one
can construct a giant S-set Zt of type t. However this does little more than give a
proof of [1, Thm. 3.9] albeit one which only involves the elementary combinatorics
described here.
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