Cluster algebras and quantum loop algebras

Bernard Leclerc
Université de Caen

Representation Theory in Samos, 05/07/2016

Notation and background

Notation and background

- $C=\left(c_{i j}\right)$, Cartan matrix $\left(A_{n}, B_{n}, \ldots, F_{4}, G_{2}\right)$

Notation and background

- $C=\left(c_{i j}\right)$, Cartan matrix $\left(A_{n}, B_{n}, \ldots, F_{4}, G_{2}\right)$
- $D=\operatorname{diag}\left(d_{i}\right), d_{i} \in \mathbb{Z}_{>0}, \min \left(d_{i}\right)=1$, such that $D C$ is symmetric

Notation and background

- $C=\left(c_{i j}\right)$, Cartan matrix $\left(A_{n}, B_{n}, \ldots, F_{4}, G_{2}\right)$
- $D=\operatorname{diag}\left(d_{i}\right), d_{i} \in \mathbb{Z}_{>0}, \min \left(d_{i}\right)=1$, such that $D C$ is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}

Notation and background

- $C=\left(c_{i j}\right)$, Cartan matrix $\left(A_{n}, B_{n}, \ldots, F_{4}, G_{2}\right)$
- $D=\operatorname{diag}\left(d_{i}\right), d_{i} \in \mathbb{Z}_{>0}, \min \left(d_{i}\right)=1$, such that $D C$ is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}
- $\mathfrak{g} \rightsquigarrow L \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$, loop algebra

Notation and background

- $C=\left(c_{i j}\right)$, Cartan matrix $\left(A_{n}, B_{n}, \ldots, F_{4}, G_{2}\right)$
- $D=\operatorname{diag}\left(d_{i}\right), d_{i} \in \mathbb{Z}_{>0}, \min \left(d_{i}\right)=1$, such that $D C$ is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}
- $\mathfrak{g} \rightsquigarrow L \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$, loop algebra
- $U_{q}(L \mathfrak{g})$, quantum loop algebra $\left(q \in \mathbb{C}^{*}\right.$ non root of 1$)$

Notation and background

- $C=\left(c_{i j}\right)$, Cartan matrix $\left(A_{n}, B_{n}, \ldots, F_{4}, G_{2}\right)$
- $D=\operatorname{diag}\left(d_{i}\right), d_{i} \in \mathbb{Z}_{>0}, \min \left(d_{i}\right)=1$, such that $D C$ is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}
- $\mathfrak{g} \rightsquigarrow L \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$, loop algebra
- $U_{q}(L \mathfrak{g})$, quantum loop algebra $\left(q \in \mathbb{C}^{*}\right.$ non root of 1$)$
- \mathscr{C}, category of finite-dimensional $U_{q}(L \mathfrak{g})$-modules

Notation and background

- $C=\left(c_{i j}\right)$, Cartan matrix $\left(A_{n}, B_{n}, \ldots, F_{4}, G_{2}\right)$
- $D=\operatorname{diag}\left(d_{i}\right), d_{i} \in \mathbb{Z}_{>0}, \min \left(d_{i}\right)=1$, such that $D C$ is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}
- $\mathfrak{g} \rightsquigarrow L \mathfrak{g}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right]$, loop algebra
- $U_{q}(L \mathfrak{g})$, quantum loop algebra $\left(q \in \mathbb{C}^{*}\right.$ non root of 1$)$
- \mathscr{C}, category of finite-dimensional $U_{q}(L \mathfrak{g})$-modules

Theorem (Hernandez-L 08, Nakajima, Kimura-Qin, Qin, HL 13)

Grothendieck rings of monoidal subcategories of \mathscr{C} have natural cluster algebra structure

A cluster algebra

A cluster algebra

- $C=\left(c_{i j} \mid i, j \in I\right)$, Cartan matrix

A cluster algebra

- $C=\left(c_{i j} \mid i, j \in I\right)$, Cartan matrix
- Γ, quiver with vertex set $V:=I \times \mathbb{Z}$, and arrows:

$$
(i, r) \rightarrow(j, s) \quad \Longleftrightarrow \quad c_{i j} \neq 0 \text { and } s=r+d_{i} c_{i j}
$$

A cluster algebra

- $C=\left(c_{i j} \mid i, j \in I\right)$, Cartan matrix
- Γ, quiver with vertex set $V:=I \times \mathbb{Z}$, and arrows:

$$
(i, r) \rightarrow(j, s) \quad \Longleftrightarrow \quad c_{i j} \neq 0 \text { and } s=r+d_{i} c_{i j}
$$

- $z:=\left\{z_{i, r} \mid(i, r) \in V\right\}$, set of indeterminates

A cluster algebra

- $C=\left(c_{i j} \mid i, j \in I\right)$, Cartan matrix
- Γ, quiver with vertex set $V:=I \times \mathbb{Z}$, and arrows:

$$
(i, r) \rightarrow(j, s) \quad \Longleftrightarrow \quad c_{i j} \neq 0 \text { and } s=r+d_{i} c_{i j}
$$

- $z:=\left\{z_{i, r} \mid(i, r) \in V\right\}$, set of indeterminates

Definition

\mathscr{A}, cluster algebra with initial seed (z, Γ)

Type A_{2}

Type A_{2}

$$
C=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

Type A_{2}

$$
C=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

Type B_{2}

Type B_{2}

$$
C=\left(\begin{array}{cc}
2 & -1 \\
-2 & 2
\end{array}\right)
$$

Type B_{2}

$$
C=\left(\begin{array}{cc}
2 & -1 \\
-2 & 2
\end{array}\right)
$$

Connection between \mathscr{C} and \mathscr{A}

Connection between \mathscr{C} and \mathscr{A}

- simple object $M \in \mathscr{C} \rightsquigarrow q$-character $\chi_{q}(M)$

Connection between \mathscr{C} and \mathscr{A}

- simple object $M \in \mathscr{C} \rightsquigarrow q$-character $\chi_{q}(M)$: a Laurent polynomial in some variables $Y_{i, a}$

Connection between \mathscr{C} and \mathscr{A}

- simple object $M \in \mathscr{C} \rightsquigarrow q$-character $\chi_{q}(M)$: a Laurent polynomial in some variables $Y_{i, a}$
- cluster variable $x \in \mathscr{A}$

Connection between \mathscr{C} and \mathscr{A}

- simple object $M \in \mathscr{C} \rightsquigarrow q$-character $\chi_{q}(M)$: a Laurent polynomial in some variables $Y_{i, a}$
- cluster variable $x \in \mathscr{A}$: a Laurent polynomial in the $z_{i, r}$

Connection between \mathscr{C} and \mathscr{A}

- simple object $M \in \mathscr{C} \rightsquigarrow q$-character $\chi_{q}(M)$: a Laurent polynomial in some variables $Y_{i, a}$
- cluster variable $x \in \mathscr{A}$: a Laurent polynomial in the $z_{i, r}$

Main observation

Under the change of variables

$$
Y_{i, q^{s}}=\frac{z_{i, s-d_{i}}}{z_{i, s+d_{i}}}
$$

the q-characters of certain simple objects of \mathscr{C} become equal to certain cluster variables of \mathscr{A}.

Example in type A_{2}

Example in type A_{2}

- Fundamental module $L\left(Y_{1, q}\right)$:

$$
\chi_{q}\left(L\left(Y_{1, q}\right)\right)=Y_{1, q}+Y_{1, q^{3}}^{-1} Y_{2, q^{2}}+Y_{2, q^{4}}^{-1}
$$

Example in type A_{2}

- Fundamental module $L\left(Y_{1, q}\right)$:

$$
\chi_{q}\left(L\left(Y_{1, q}\right)\right)=Y_{1, q}+Y_{1, q^{3}}^{-1} Y_{2, q^{2}}+Y_{2, q^{4}}^{-1}
$$

- Cluster variable obtained by mutation at $(1,2)$ followed by mutation at $(2,3)$:

$$
\left(\mu_{(2,3)} \circ \mu_{(1,2)}\right)\left(z_{2,3}\right)=\frac{z_{1,0}}{z_{1,2}}+\frac{z_{1,4} z_{2,1}}{z_{1,2} z_{2,3}}+\frac{z_{2,5}}{z_{2,3}}
$$

Theorem (Hernandez-L 2013)

The "main observation" holds for all Kirillov-Reshetikhin modules:

$$
W_{k, a}^{(i)}:=L\left(Y_{i, a} Y_{i, a q^{2 d_{i}}} \cdots Y_{\left.i, a q^{(2 k-2) d_{i}}\right)}\right)
$$

Theorem (Hernandez-L 2013)

The "main observation" holds for all Kirillov-Reshetikhin modules:

$$
W_{k, a}^{(i)}:=L\left(Y_{i, a} Y_{i, a q^{2 d_{i}}} \cdots Y_{\left.i, a q^{(2 k-2) d_{i}}\right)}\right.
$$

A simple object $S \in \mathscr{C}$ is called "real" if $S \otimes S$ is simple.

Theorem (Hernandez-L 2013)

The "main observation" holds for all Kirillov-Reshetikhin modules:

$$
W_{k, a}^{(i)}:=L\left(Y_{i, a} Y_{i, a q^{2 d_{i}}} \cdots Y_{\left.i, a q^{(2 k-2) d_{i}}\right)}\right.
$$

A simple object $S \in \mathscr{C}$ is called "real" if $S \otimes S$ is simple.

Conjecture

The q-characters of real simple objects of \mathscr{C} are equal to certain cluster monomials of \mathscr{A} (under the above change of variables).

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C}

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

What is their meaning in terms of $U_{q}(L \mathfrak{g})$?

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

What is their meaning in terms of $U_{q}(L \mathfrak{g})$?
Maybe one should consider a bigger category $\mathscr{O} \supset \mathscr{C}$?

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

What is their meaning in terms of $U_{q}(L \mathfrak{g})$?
Maybe one should consider a bigger category $\mathscr{O} \supset \mathscr{C}$?
Such a category has been introduced by Hernandez and Jimbo (2012), and further studied by Frenkel and Hernandez (2015, 2016).

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

What is their meaning in terms of $U_{q}(L \mathfrak{g})$?
Maybe one should consider a bigger category $\mathscr{O} \supset \mathscr{C}$?
Such a category has been introduced by Hernandez and Jimbo (2012), and further studied by Frenkel and Hernandez (2015, 2016).

Objects of \mathscr{O} are $U_{q}(\mathfrak{b})$-modules, where $\mathfrak{b} \subset L \mathfrak{g}$ is a Borel subalgebra.

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

What is their meaning in terms of $U_{q}(L \mathfrak{g})$?
Maybe one should consider a bigger category $\mathscr{O} \supset \mathscr{C}$?
Such a category has been introduced by Hernandez and Jimbo (2012), and further studied by Frenkel and Hernandez (2015, 2016).

Objects of \mathscr{O} are $U_{q}(\mathfrak{b})$-modules, where $\mathfrak{b} \subset L \mathfrak{g}$ is a Borel subalgebra. They are infinite-dimensional in general.

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

What is their meaning in terms of $U_{q}(L \mathfrak{g})$?
Maybe one should consider a bigger category $\mathscr{O} \supset \mathscr{C}$?
Such a category has been introduced by Hernandez and Jimbo (2012), and further studied by Frenkel and Hernandez (2015, 2016).

Objects of \mathscr{O} are $U_{q}(\mathfrak{b})$-modules, where $\mathfrak{b} \subset L \mathfrak{g}$ is a Borel subalgebra. They are infinite-dimensional in general.

The building blocks of \mathscr{O} are the prefundamental modules:

$$
L_{i, a}^{+}, \quad L_{i, a}^{-}, \quad\left(i \in I, a \in \mathbb{C}^{*}\right)
$$

Prefundamental modules in type A_{1}

Prefundamental modules in type A_{1}

- $U_{q}\left(\mathfrak{s l}_{2}\right)$: generators e, f, k (k invertible), relations:

$$
k e=q^{2} e k, \quad k f=q^{-2} f k, \quad[e, f]=\frac{k-k^{-1}}{q-q^{-1}}
$$

Prefundamental modules in type A_{1}

- $U_{q}\left(\mathfrak{s l}_{2}\right)$: generators e, f, k (k invertible), relations:

$$
k e=q^{2} e k, \quad k f=q^{-2} f k, \quad[e, f]=\frac{k-k^{-1}}{q-q^{-1}}
$$

- $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$: generators $e_{0}, e_{1}, f_{0}, f_{1}, k_{0}, k_{1}\left(k_{0}, k_{1}\right.$ invertible), similar relations given by Cartan matrix $C=\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)$

Prefundamental modules in type A_{1}

- $U_{q}\left(\mathfrak{s l}_{2}\right)$: generators e, f, k (k invertible), relations:

$$
k e=q^{2} e k, \quad k f=q^{-2} f k, \quad[e, f]=\frac{k-k^{-1}}{q-q^{-1}}
$$

- $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$: generators $e_{0}, e_{1}, f_{0}, f_{1}, k_{0}, k_{1}\left(k_{0}, k_{1}\right.$ invertible), similar relations given by Cartan matrix $C=\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)$
- $U_{q}\left(L \mathfrak{s l}_{2}\right)$: quotient of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ by $k_{0} k_{1}=1$.

Prefundamental modules in type A_{1}

- $U_{q}\left(\mathfrak{s l}_{2}\right)$: generators e, f, k (k invertible), relations:

$$
k e=q^{2} e k, \quad k f=q^{-2} f k, \quad[e, f]=\frac{k-k^{-1}}{q-q^{-1}}
$$

- $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$: generators $e_{0}, e_{1}, f_{0}, f_{1}, k_{0}, k_{1}\left(k_{0}, k_{1}\right.$ invertible), similar relations given by Cartan matrix $C=\left(\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right)$
- $U_{q}\left(L_{\mathfrak{s l}}^{2}\right):$ quotient of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$ by $k_{0} k_{1}=1$.
- for $a \in \mathbb{C}^{*}$, evaluation homomorphism $\mathrm{ev}_{a}: U_{q}\left(L \mathfrak{s l}_{2}\right) \rightarrow U_{q}\left(\mathfrak{s l}_{2}\right)$

$$
e_{1} \mapsto e, \quad f_{1} \mapsto f, \quad k_{1} \mapsto k, \quad e_{0} \mapsto q^{-1} a^{-1} f, \quad f_{0} \mapsto q a e
$$

Prefundamental modules in type A_{1}

- $V_{n}: U_{q}\left(\mathfrak{s l}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$

$$
e v_{i}=v_{i-1}, \quad f v_{i}=[i+1][n-i] v_{i+1}, \quad k v_{i}=q^{n-2 i} v_{i}
$$

Prefundamental modules in type A_{1}

- $V_{n}: U_{q}\left(\mathfrak{s l}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$

$$
e v_{i}=v_{i-1}, \quad f v_{i}=[i+1][n-i] v_{i+1}, \quad k v_{i}=q^{n-2 i} v_{i}
$$

- $V_{n}(a): U_{q}\left(L \operatorname{sl}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$

$$
e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=q^{-1} a^{-1}[i+1][n-i] v_{i+1}, \quad k_{1} v_{i}=q^{n-2 i} v_{i}
$$

Prefundamental modules in type A_{1}

- $V_{n}: U_{q}\left(\mathfrak{s l}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$

$$
e v_{i}=v_{i-1}, \quad f v_{i}=[i+1][n-i] v_{i+1}, \quad k v_{i}=q^{n-2 i} v_{i}
$$

- $V_{n}(a): U_{q}\left(L \operatorname{sl}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$
$e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=q^{-1} a^{-1}[i+1][n-i] v_{i+1}, \quad k_{1} v_{i}=q^{n-2 i} v_{i}$
- Take $a=q^{n-1},|q|>1$ and "let $n \rightarrow \infty$ ":
L^{-}with basis $\left(v_{i} \mid i \in \mathbb{Z}_{\geq 0}\right)$

$$
e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=[i+1] \frac{q^{-i}}{q-q^{-1}} v_{i+1}
$$

Prefundamental modules in type A_{1}

- $V_{n}: U_{q}\left(\mathfrak{s l}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$

$$
e v_{i}=v_{i-1}, \quad f v_{i}=[i+1][n-i] v_{i+1}, \quad k v_{i}=q^{n-2 i} v_{i}
$$

- $V_{n}(a): U_{q}\left(L_{s l}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$
$e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=q^{-1} a^{-1}[i+1][n-i] v_{i+1}, \quad k_{1} v_{i}=q^{n-2 i} v_{i}$
- Take $a=q^{n-1},|q|>1$ and "let $n \rightarrow \infty$ ":
L^{-}with basis $\left(v_{i} \mid i \in \mathbb{Z}_{\geq 0}\right)$

$$
e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=[i+1] \frac{q^{-i}}{q-q^{-1}} v_{i+1}, \quad k_{1} v_{i}=q^{-2 i} v_{i}
$$

Prefundamental modules in type A_{1}

- $V_{n}: U_{q}\left(\mathfrak{s l}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$

$$
e v_{i}=v_{i-1}, \quad f v_{i}=[i+1][n-i] v_{i+1}, \quad k v_{i}=q^{n-2 i} v_{i}
$$

- $V_{n}(a): U_{q}\left(L \operatorname{sl}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$
$e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=q^{-1} a^{-1}[i+1][n-i] v_{i+1}, \quad k_{1} v_{i}=q^{n-2 i} v_{i}$
- Take $a=q^{n-1},|q|>1$ and "let $n \rightarrow \infty$ ":
L^{-}with basis $\left(v_{i} \mid i \in \mathbb{Z}_{\geq 0}\right)$

$$
e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=[i+1] \frac{q^{-i}}{q-q^{-1}} v_{i+1}, \quad k_{1} v_{i}=q^{-2 i} v_{i}
$$

- $U_{q}(\mathfrak{b})$, subalgebra of $U_{q}(L \mathfrak{g})$ generated by e_{0}, e_{1}, k_{1}.

Prefundamental modules in type A_{1}

- $V_{n}: U_{q}\left(\mathfrak{s l}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$

$$
e v_{i}=v_{i-1}, \quad f v_{i}=[i+1][n-i] v_{i+1}, \quad k v_{i}=q^{n-2 i} v_{i}
$$

- $V_{n}(a): U_{q}\left(L \operatorname{sl}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$
$e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=q^{-1} a^{-1}[i+1][n-i] v_{i+1}, \quad k_{1} v_{i}=q^{n-2 i} v_{i}$
- Take $a=q^{n-1},|q|>1$ and "let $n \rightarrow \infty$ ":
L^{-}with basis $\left(v_{i} \mid i \in \mathbb{Z}_{\geq 0}\right)$

$$
e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=[i+1] \frac{q^{-i}}{q-q^{-1}} v_{i+1}, \quad k_{1} v_{i}=q^{-2 i} v_{i}
$$

- $U_{q}(\mathfrak{b})$, subalgebra of $U_{q}(L \mathfrak{g})$ generated by e_{0}, e_{1}, k_{1}.
- L^{-}is a $U_{q}(\mathfrak{b})$-module. Cannot be extended to a $U_{q}(L \mathfrak{g})$-module.

Prefundamental modules in type A_{1}

- $V_{n}: U_{q}\left(\mathfrak{s l}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$

$$
e v_{i}=v_{i-1}, \quad f v_{i}=[i+1][n-i] v_{i+1}, \quad k v_{i}=q^{n-2 i} v_{i}
$$

- $V_{n}(a): U_{q}\left(\mathfrak{s l}_{2}\right)$-module with basis $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$
$e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=q^{-1} a^{-1}[i+1][n-i] v_{i+1}, \quad k_{1} v_{i}=q^{n-2 i} v_{i}$
- Take $a=q^{-n-1},|q|<1$ and "let $n \rightarrow \infty$ ":
L^{-}with basis $\left(v_{i} \mid i \in \mathbb{Z}_{\geq 0}\right)$

$$
e_{1} v_{i}=v_{i-1}, \quad e_{0} v_{i}=[i+1] \frac{-q^{+i}}{q-q^{-1}} v_{i+1}, \quad k_{1} v_{i}=q^{-2 i} v_{i}
$$

- $U_{q}(\mathfrak{b})$, subalgebra of $U_{q}(L \mathfrak{g})$ generated by e_{0}, e_{1}, k_{1}.
- L^{+}is a $U_{q}(\mathfrak{b})$-module. Cannot be extended to a $U_{q}(L \mathfrak{g})$-module.

Prefundamental modules in type A_{1}

- L^{+}and L^{-}are quite different

Prefundamental modules in type A_{1}

- L^{+}and L^{-}are quite different
- $U_{q}(\mathfrak{b}) \supset$ commutative subalgebra generated by $\phi_{k}\left(k \in \mathbb{Z}_{\geq 0}\right)$

$$
\phi_{0}=k_{1}, \quad \phi_{1}=\left(q-q^{-1}\right)\left[e_{1}, e_{0} k_{1}\right]
$$

Prefundamental modules in type A_{1}

- L^{+}and L^{-}are quite different
- $U_{q}(\mathfrak{b}) \supset$ commutative subalgebra generated by $\phi_{k}\left(k \in \mathbb{Z}_{\geq 0}\right)$

$$
\phi_{0}=k_{1}, \quad \phi_{1}=\left(q-q^{-1}\right)\left[e_{1}, e_{0} k_{1}\right]
$$

- $\phi(u)=\sum_{k \geq 0} \phi_{k} u^{k}$

Prefundamental modules in type A_{1}

- L^{+}and L^{-}are quite different
- $U_{q}(\mathfrak{b}) \supset$ commutative subalgebra generated by $\phi_{k}\left(k \in \mathbb{Z}_{\geq 0}\right)$

$$
\phi_{0}=k_{1}, \quad \phi_{1}=\left(q-q^{-1}\right)\left[e_{1}, e_{0} k_{1}\right]
$$

- $\phi(u)=\sum_{k \geq 0} \phi_{k} u^{k}$
- In $L^{+}: \phi(u) v_{i}=q^{-2 i}(1-u) v_{i}$

Prefundamental modules in type A_{1}

- L^{+}and L^{-}are quite different
- $U_{q}(\mathfrak{b}) \supset$ commutative subalgebra generated by $\phi_{k}\left(k \in \mathbb{Z}_{\geq 0}\right)$

$$
\phi_{0}=k_{1}, \quad \phi_{1}=\left(q-q^{-1}\right)\left[e_{1}, e_{0} k_{1}\right]
$$

- $\phi(u)=\sum_{k \geq 0} \phi_{k} u^{k}$
- In $L^{+}: \phi(u) v_{i}=q^{-2 i}(1-u) v_{i}$
- In $L^{-}: \phi(u) v_{i}=\frac{q^{-2 i}\left(1-q^{2} u\right)}{\left(1-q^{-2 i} u\right)\left(1-q^{-2 i+2}\right)} v_{i}$

Prefundamental modules in type A_{1}

- L^{+}and L^{-}are quite different
- $U_{q}(\mathfrak{b}) \supset$ commutative subalgebra generated by $\phi_{k}\left(k \in \mathbb{Z}_{\geq 0}\right)$

$$
\phi_{0}=k_{1}, \quad \phi_{1}=\left(q-q^{-1}\right)\left[e_{1}, e_{0} k_{1}\right]
$$

- $\phi(u)=\sum_{k \geq 0} \phi_{k} u^{k}$
- In $L^{+}: \phi(u) v_{i}=q^{-2 i}(1-u) v_{i}$
- In $L^{-}: \phi(u) v_{i}=\frac{q^{-2 i}\left(1-q^{2} u\right)}{\left(1-q^{-2 i} u\right)\left(1-q^{-2 i+2}\right)} v_{i}$
- L^{+}has highest ℓ-weight $1-u$

Prefundamental modules in type A_{1}

- L^{+}and L^{-}are quite different
- $U_{q}(\mathfrak{b}) \supset$ commutative subalgebra generated by $\phi_{k}\left(k \in \mathbb{Z}_{\geq 0}\right)$

$$
\phi_{0}=k_{1}, \quad \phi_{1}=\left(q-q^{-1}\right)\left[e_{1}, e_{0} k_{1}\right]
$$

- $\phi(u)=\sum_{k \geq 0} \phi_{k} u^{k}$
- In $L^{+}: \phi(u) v_{i}=q^{-2 i}(1-u) v_{i}$
- In $L^{-}: \phi(u) v_{i}=\frac{q^{-2 i}\left(1-q^{2} u\right)}{\left(1-q^{-2 i} u\right)\left(1-q^{-2 i+2}\right)} v_{i}$
- L^{+}has highest ℓ-weight $1-u$
- L^{-}has highest ℓ-weight $\frac{1}{1-u}$

Prefundamental modules in type A_{1}

- shift automorphism: τ_{a} of $U_{q}(\mathfrak{b}): e_{1} \mapsto e_{1}, k_{1} \mapsto k_{1}, e_{0} \mapsto a e_{0}$

Prefundamental modules in type A_{1}

- shift automorphism: τ_{a} of $U_{q}(\mathfrak{b}): e_{1} \mapsto e_{1}, k_{1} \mapsto k_{1}, e_{0} \mapsto a e_{0}$
- \rightsquigarrow positive and negative prefundamental $U_{q}(\mathfrak{b})$-modules:
L_{a}^{+}, highest ℓ-weight $1-a u$
L_{a}^{-}, highest ℓ-weight $\frac{1}{1-a u}$

Prefundamental modules in type A_{1}

- shift automorphism: τ_{a} of $U_{q}(\mathfrak{b}): e_{1} \mapsto e_{1}, k_{1} \mapsto k_{1}, e_{0} \mapsto a e_{0}$
- \rightsquigarrow positive and negative prefundamental $U_{q}(\mathfrak{b})$-modules:
L_{a}^{+}, highest ℓ-weight $1-a u$
L_{a}^{-}, highest ℓ-weight $\frac{1}{1-a u}$
- If $\lambda=b \varpi$ is an $\mathfrak{s l}_{2}$-weight, also have the one-dimensional $U_{q}(\mathfrak{b})$-module $[\lambda]$:

$$
e_{0}=e_{1}=0, \quad k_{1}=q^{b}
$$

$[\lambda]$ is a zero prefundamental module.

Prefundamental modules in type A_{1}

- shift automorphism: τ_{a} of $U_{q}(\mathfrak{b}): e_{1} \mapsto e_{1}, k_{1} \mapsto k_{1}, e_{0} \mapsto a e_{0}$
- \rightsquigarrow positive and negative prefundamental $U_{q}(\mathfrak{b})$-modules:
L_{a}^{+}, highest ℓ-weight $1-a u$
L_{a}^{-}, highest ℓ-weight $\frac{1}{1-a u}$
- If $\lambda=b \varpi$ is an $\mathfrak{s l}_{2}$-weight, also have the one-dimensional $U_{q}(\mathfrak{b})$-module $[\lambda]$:

$$
e_{0}=e_{1}=0, \quad k_{1}=q^{b}
$$

$[\lambda]$ is a zero prefundamental module.

- Simple objects of category \mathscr{O} of Hernandez-Jimbo are subquotients of tensor products of prefundamental modules.

Prefundamental modules in type A_{1}

- shift automorphism: τ_{a} of $U_{q}(\mathfrak{b}): e_{1} \mapsto e_{1}, k_{1} \mapsto k_{1}, e_{0} \mapsto a e_{0}$
- \rightsquigarrow positive and negative prefundamental $U_{q}(\mathfrak{b})$-modules:
L_{a}^{+}, highest ℓ-weight $1-a u$
L_{a}^{-}, highest ℓ-weight $\frac{1}{1-a u}$
- If $\lambda=b \varpi$ is an $\mathfrak{s l}_{2}$-weight, also have the one-dimensional $U_{q}(\mathfrak{b})$-module $[\lambda]$:

$$
e_{0}=e_{1}=0, \quad k_{1}=q^{b}
$$

$[\lambda]$ is a zero prefundamental module.

- Simple objects of category \mathscr{O} of Hernandez-Jimbo are subquotients of tensor products of prefundamental modules. They are parametrized by their highest ℓ-weight $\psi \in \mathbb{C}(u)$.

Arbitrary type X_{r}

Arbitrary type X_{r}

- $U_{q}(L \mathfrak{g}) \supset U_{q}(\mathfrak{b})$: generators $e_{0}, e_{1}, \ldots, e_{r}, k_{1}^{ \pm 1}, \ldots, k_{r}^{ \pm 1}$

Arbitrary type X_{r}

- $U_{q}(L \mathfrak{g}) \supset U_{q}(\mathfrak{b})$: generators $e_{0}, e_{1}, \ldots, e_{r}, k_{1}^{ \pm 1}, \ldots, k_{r}^{ \pm 1}$
- commutative subalgebra: $\phi_{1, k}, \ldots, \phi_{r, k},\left(k \in \mathbb{Z}_{>0}\right)$

Arbitrary type X_{r}

- $U_{q}(L \mathfrak{g}) \supset U_{q}(\mathfrak{b})$: generators $e_{0}, e_{1}, \ldots, e_{r}, k_{1}^{ \pm 1}, \ldots, k_{r}^{ \pm 1}$
- commutative subalgebra: $\phi_{1, k}, \ldots, \phi_{r, k},\left(k \in \mathbb{Z}_{>0}\right)$
- highest ℓ-weight $U_{q}(\mathfrak{b})$-module: $V=U_{q}(\mathfrak{b}) v$ such that

$$
e_{i} v=0, \quad \phi_{i}(u) v=\psi_{i}(u) v, \quad(1 \leq i \leq r)
$$

for some $\psi=\left(\psi_{1}, \ldots, \psi_{r}\right) \in \mathbb{C}[[u]]^{r}$.

Arbitrary type X_{r}

- $U_{q}(L \mathfrak{g}) \supset U_{q}(\mathfrak{b})$: generators $e_{0}, e_{1}, \ldots, e_{r}, k_{1}^{ \pm 1}, \ldots, k_{r}^{ \pm 1}$
- commutative subalgebra: $\phi_{1, k}, \ldots, \phi_{r, k},\left(k \in \mathbb{Z}_{>0}\right)$
- highest ℓ-weight $U_{q}(\mathfrak{b})$-module: $V=U_{q}(\mathfrak{b}) v$ such that

$$
e_{i} v=0, \quad \phi_{i}(u) v=\psi_{i}(u) v, \quad(1 \leq i \leq r)
$$

for some $\psi=\left(\psi_{1}, \ldots, \psi_{r}\right) \in \mathbb{C}[[u]]^{r}$.

- Hernandez-Jimbo: highest ℓ-weight modules

$$
\begin{array}{ll}
L_{i, a}^{+}, & \Psi_{i, a}^{+}=(0, \ldots, 1-a u, \ldots, 0), \quad\left(1 \leq i \leq r, a \in \mathbb{C}^{*}\right) \\
L_{i, a}^{-}, & \Psi_{i, a}^{-}=\left(0, \ldots, \frac{1}{1-a u}, \ldots, 0\right), \quad\left(1 \leq i \leq r, a \in \mathbb{C}^{*}\right)
\end{array}
$$

Arbitrary type X_{r}

- $U_{q}(L \mathfrak{g}) \supset U_{q}(\mathfrak{b})$: generators $e_{0}, e_{1}, \ldots, e_{r}, k_{1}^{ \pm 1}, \ldots, k_{r}^{ \pm 1}$
- commutative subalgebra: $\phi_{1, k}, \ldots, \phi_{r, k},\left(k \in \mathbb{Z}_{>0}\right)$
- highest ℓ-weight $U_{q}(\mathfrak{b})$-module: $V=U_{q}(\mathfrak{b}) v$ such that

$$
e_{i} v=0, \quad \phi_{i}(u) v=\psi_{i}(u) v, \quad(1 \leq i \leq r)
$$

for some $\psi=\left(\psi_{1}, \ldots, \psi_{r}\right) \in \mathbb{C}[[u]]^{r}$.

- Hernandez-Jimbo: highest ℓ-weight modules

$$
\begin{array}{ll}
L_{i, a}^{+}, & \Psi_{i, a}^{+}=(0, \ldots, 1-a u, \ldots, 0), \quad\left(1 \leq i \leq r, a \in \mathbb{C}^{*}\right) \\
L_{i, a}^{-}, & \Psi_{i, a}^{-}=\left(0, \ldots, \frac{1}{1-a u}, \ldots, 0\right), \quad\left(1 \leq i \leq r, a \in \mathbb{C}^{*}\right)
\end{array}
$$

- simple objects of \mathscr{O} are highest ℓ-weight modules with $\Psi \in \mathbb{C}(u)^{r}$. Notation: $L(\Psi)$.

Arbitrary type X_{r}

- $U_{q}(L \mathfrak{g}) \supset U_{q}(\mathfrak{b})$: generators $e_{0}, e_{1}, \ldots, e_{r}, k_{1}^{ \pm 1}, \ldots, k_{r}^{ \pm 1}$
- commutative subalgebra: $\phi_{1, k}, \ldots, \phi_{r, k},\left(k \in \mathbb{Z}_{>0}\right)$
- highest ℓ-weight $U_{q}(\mathfrak{b})$-module: $V=U_{q}(\mathfrak{b}) v$ such that

$$
e_{i} v=0, \quad \phi_{i}(u) v=\psi_{i}(u) v, \quad(1 \leq i \leq r)
$$

for some $\psi=\left(\psi_{1}, \ldots, \psi_{r}\right) \in \mathbb{C}[[u]]^{r}$.

- Hernandez-Jimbo: highest ℓ-weight modules

$$
\begin{array}{ll}
L_{i, a}^{+}, & \Psi_{i, a}^{+}=(0, \ldots, 1-a u, \ldots, 0), \quad\left(1 \leq i \leq r, a \in \mathbb{C}^{*}\right) \\
L_{i, a}^{-}, & \Psi_{i, a}^{-}=\left(0, \ldots, \frac{1}{1-a u}, \ldots, 0\right), \quad\left(1 \leq i \leq r, a \in \mathbb{C}^{*}\right)
\end{array}
$$

- simple objects of \mathscr{O} are highest ℓ-weight modules with $\Psi \in \mathbb{C}(u)^{r}$. Notation: $L(\Psi)$.
They are subquotients of tensor products of $L_{i, a}^{+}, L_{i, a}^{-}$, and $[\lambda]$.

Finite-dimensional modules

Finite-dimensional modules

- $Y_{i, a}:=\left[\varpi_{i}\right] \Psi_{i, a q^{-d_{i}}}^{+} \Psi_{i, a q^{d_{i}}}^{-}$

Finite-dimensional modules

- $Y_{i, a}:=\left[\varpi_{i}\right] \Psi_{i, a q^{-d_{i}}}^{+} \Psi_{i, a q^{d_{i}}}^{-}$
- $L\left(Y_{i, a}\right)$ is finite-dimensional : restriction to $U_{q}(\mathfrak{b})$ of fundamental $U_{q}(L(\mathfrak{g}))$-module

Finite-dimensional modules

- $Y_{i, a}:=\left[\varpi_{i}\right] \Psi_{i, a q^{-d_{i}}}^{+} \Psi_{i, a q^{d_{i}}}^{-}$
- $L\left(Y_{i, a}\right)$ is finite-dimensional : restriction to $U_{q}(\mathfrak{b})$ of fundamental $U_{q}(L(\mathfrak{g}))$-module
- every simple finite-dimensional module in \mathscr{O} is of the form $[\lambda] \otimes L(m)$, where m is a product of $Y_{i, a}$'s.

Finite-dimensional modules

- $Y_{i, a}:=\left[\varpi_{i}\right] \Psi_{i, a q^{-d_{i}}}^{+} \Psi_{i, a q^{d_{i}}}^{-}$
- $L\left(Y_{i, a}\right)$ is finite-dimensional : restriction to $U_{q}(\mathfrak{b})$ of fundamental $U_{q}(L(\mathfrak{g}))$-module
- every simple finite-dimensional module in \mathscr{O} is of the form $[\lambda] \otimes L(m)$, where m is a product of $Y_{i, a}$'s.
$-\rightsquigarrow \mathscr{C} \subset \mathscr{O}$.

Definition

- $\Psi>0$ if it is a product of $\Psi_{i, a}^{+}, Y_{i, a}$, and $[\lambda]$.
- \mathscr{O}^{+}is the full subcategory of \mathscr{O} whose objects have all their simple constituents of the form $L(\Psi)$ with $\Psi>0$.

Definition

- $\Psi>0$ if it is a product of $\Psi_{i, a}^{+}, Y_{i, a}$, and $[\lambda]$.
- \mathscr{O}^{+}is the full subcategory of \mathscr{O} whose objects have all their simple constituents of the form $L(\Psi)$ with $\Psi>0$.
- Recall \mathscr{A} : cluster algebra associated with Cartan matrix of \mathfrak{g}

Definition

- $\Psi>0$ if it is a product of $\Psi_{i, a}^{+}, Y_{i, a}$, and $[\lambda]$.
- \mathscr{O}^{+}is the full subcategory of \mathscr{O} whose objects have all their simple constituents of the form $L(\Psi)$ with $\Psi>0$.
- Recall \mathscr{A} : cluster algebra associated with Cartan matrix of \mathfrak{g}
- \mathscr{P}, group algebra of the weight lattice of \mathfrak{g},

Definition

- $\Psi>0$ if it is a product of $\Psi_{i, a}^{+}, Y_{i, a}$, and $[\lambda]$.
- \mathscr{O}^{+}is the full subcategory of \mathscr{O} whose objects have all their simple constituents of the form $L(\Psi)$ with $\Psi>0$.
- Recall \mathscr{A} : cluster algebra associated with Cartan matrix of \mathfrak{g}
- \mathscr{P}, group algebra of the weight lattice of $\mathfrak{g}, A:=\mathscr{P} \otimes_{\mathbb{Z}} \mathscr{A}$

Definition

- $\Psi>0$ if it is a product of $\Psi_{i, a}^{+}, Y_{i, a}$, and $[\lambda]$.
- \mathscr{O}^{+}is the full subcategory of \mathscr{O} whose objects have all their simple constituents of the form $L(\Psi)$ with $\Psi>0$.
- Recall \mathscr{A} : cluster algebra associated with Cartan matrix of \mathfrak{g}
- \mathscr{P}, group algebra of the weight lattice of $\mathfrak{g}, A:=\mathscr{P} \otimes_{\mathbb{Z}} \mathscr{A}$
- $\mathscr{O}_{\mathbb{Z}}^{+}$, subcategory of \mathscr{O}^{+}whose objects have all their simple constituents of the form $L(\Psi)$ such that zeros and poles of $\psi_{i}(u)$ are of the form q^{r} with $(i, r) \in V$.

Definition

- $\Psi>0$ if it is a product of $\Psi_{i, a}^{+}, Y_{i, a}$, and $[\lambda]$.
- \mathscr{O}^{+}is the full subcategory of \mathscr{O} whose objects have all their simple constituents of the form $L(\Psi)$ with $\Psi>0$.
- Recall \mathscr{A} : cluster algebra associated with Cartan matrix of \mathfrak{g}
- \mathscr{P}, group algebra of the weight lattice of $\mathfrak{g}, A:=\mathscr{P} \otimes_{\mathbb{Z}} \mathscr{A}$
- $\mathscr{O}_{\mathbb{Z}}^{+}$, subcategory of \mathscr{O}^{+}whose objects have all their simple constituents of the form $L(\Psi)$ such that zeros and poles of $\psi_{i}(u)$ are of the form q^{r} with $(i, r) \in V$.

Theorem (Hernandez-L 2016)

The assignment

$$
\left[\left(r / 2 d_{i}\right) \varpi_{i}\right] \otimes z_{i, r} \mapsto\left[L_{i, q^{r}}^{+}\right], \quad((i, r) \in V)
$$

extends to an isomorphism from (a completion of) A to $K_{0}\left(\mathscr{O}_{\mathbb{Z}}^{+}\right)$.

Example: type A_{2}

Example: type A_{2}

Example: type A_{2}

Example: type A_{2}

$$
\begin{aligned}
& =\left[-3 \omega_{2} / 2\right]\left[L\left(Y_{1, q} \Psi_{2, q^{3}}^{+}\right)\right]
\end{aligned}
$$

Example: type A_{2}

$$
\begin{aligned}
& =\left[-3 \omega_{2} / 2\right]\left[L\left(Y_{1, q} \Psi_{2, q^{3}}^{+}\right)\right]
\end{aligned}
$$

- $\left(\mu_{(2,3)^{\circ}} \mu_{(1,2)}\right)\left(\left[-3 \omega_{2} / 2\right]\left[L_{2, q^{3}}^{+}\right]\right)=$

Example: type A_{2}

$$
\begin{aligned}
& =\left[-3 \omega_{2} / 2\right]\left[L\left(Y_{1, q} \Psi_{2, q^{3}}^{+}\right)\right]
\end{aligned}
$$

- $\left(\mu_{(2,3)^{\circ}} \mu_{(1,2)}\right)\left(\left[-3 \omega_{2} / 2\right]\left[L_{2, q^{3}}^{+}\right]\right)=$

$$
\begin{aligned}
& =\left[L\left(Y_{1, q}\right)\right]
\end{aligned}
$$

Last equality follows from:

Theorem (Frenkel-Hernandez 2015)

Let $M \in \mathscr{C}$. If one replaces in the q-character of M every $Y_{i, a}$ by

$$
\left[\varpi_{i}\right] \frac{\left[L_{i, a q^{-d_{i}}}^{+}\right]}{\left[L_{i, a q^{d_{i}}}^{+}\right]}
$$

and $\chi_{q}(M)$ by $[M]$, one obtains a valid relation in the fraction field of $K_{0}(\mathscr{O})$.

Conjecture

In the isomorphism $A \cong K_{0}\left(\mathscr{O}_{\mathbb{Z}}^{+}\right)$, the cluster variables correspond to the classes of the prime real simple modules (up to twist by some $[\lambda]$).

Conjecture

In the isomorphism $A \cong K_{0}\left(\mathscr{O}_{\mathbb{Z}}^{+}\right)$, the cluster variables correspond to the classes of the prime real simple modules (up to twist by some $[\lambda]$).

- The conjecture is true in type A_{1}.

Conjecture

In the isomorphism $A \cong K_{0}\left(\mathscr{O}_{\mathbb{Z}}^{+}\right)$, the cluster variables correspond to the classes of the prime real simple modules (up to twist by some $[\lambda]$).

- The conjecture is true in type A_{1}.
- The conjecture is true for one-step mutations for all types:

$$
\mu_{i, r}\left(z_{i, r}\right)=[\cdots]\left[L\left(Y_{i, q^{r-d_{i}}} \prod_{j, c_{j i}<0} \Psi^{+}+q^{r-d_{j} c_{j, i}}\right)\right]
$$

Conjecture

In the isomorphism $A \cong K_{0}\left(\mathscr{O}_{\mathbb{Z}}^{+}\right)$, the cluster variables correspond to the classes of the prime real simple modules (up to twist by some $[\lambda]$).

- The conjecture is true in type A_{1}.
- The conjecture is true for one-step mutations for all types:

$$
\mu_{i, r}\left(z_{i, r}\right)=[\cdots]\left[L\left(Y_{i, q^{r-d_{i}}} \prod_{j, c_{j i}<0} \Psi^{+}{ }_{j, q^{r-d_{j} c_{j, i}}}\right)\right]
$$

Theorem (Hernandez-Frenkel 2016)

The relations given by one-step mutations yield the proof of the Bethe Ansatz equations for quantum integrable models associated with $U_{q}(L \mathfrak{g})$.

