Cluster algebras and quantum loop algebras

Bernard Leclerc Université de Caen

Representation Theory in Samos, 05/07/2016

•
$$C = (c_{ij})$$
, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$

- $C = (c_{ij})$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \text{diag}(d_i), d_i \in \mathbb{Z}_{>0}, \min(d_i) = 1$, such that *DC* is symmetric

- $C = (c_{ij})$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \text{diag}(d_i), d_i \in \mathbb{Z}_{>0}, \min(d_i) = 1$, such that *DC* is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}

- $C = (c_{ij})$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \text{diag}(d_i), d_i \in \mathbb{Z}_{>0}, \min(d_i) = 1$, such that *DC* is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}
- $\mathfrak{g} \rightsquigarrow L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra

- $C = (c_{ij})$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \text{diag}(d_i), d_i \in \mathbb{Z}_{>0}, \min(d_i) = 1$, such that *DC* is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}
- $\mathfrak{g} \rightsquigarrow L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra
- $U_q(L\mathfrak{g})$, quantum loop algebra ($q \in \mathbb{C}^*$ non root of 1)

- $C = (c_{ij})$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \text{diag}(d_i), d_i \in \mathbb{Z}_{>0}, \min(d_i) = 1$, such that *DC* is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}
- $\mathfrak{g} \rightsquigarrow L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra
- $U_q(L\mathfrak{g})$, quantum loop algebra ($q \in \mathbb{C}^*$ non root of 1)
- \mathscr{C} , category of finite-dimensional $U_q(L\mathfrak{g})$ -modules

- $C = (c_{ij})$, Cartan matrix $(A_n, B_n, \dots, F_4, G_2)$
- $D = \text{diag}(d_i), d_i \in \mathbb{Z}_{>0}, \min(d_i) = 1$, such that *DC* is symmetric
- $C \rightsquigarrow \mathfrak{g}$, simple Lie algebra over \mathbb{C}
- $\mathfrak{g} \rightsquigarrow L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra
- $U_q(L\mathfrak{g})$, quantum loop algebra ($q \in \mathbb{C}^*$ non root of 1)
- \mathscr{C} , category of finite-dimensional $U_q(L\mathfrak{g})$ -modules

Theorem (Hernandez-L 08, Nakajima, Kimura-Qin, Qin, HL 13)

Grothendieck rings of monoidal subcategories of ${\mathscr C}$ have natural cluster algebra structure

•
$$C = (c_{ij} \mid i, j \in I)$$
, Cartan matrix

- $C = (c_{ij} | i, j \in I)$, Cartan matrix
- Γ , quiver with vertex set $V := I \times \mathbb{Z}$, and arrows:

$$(i,r) \rightarrow (j,s) \iff c_{ij} \neq 0 \text{ and } s = r + d_i c_{ij}$$

- $C = (c_{ij} | i, j \in I)$, Cartan matrix
- Γ , quiver with vertex set $V := I \times \mathbb{Z}$, and arrows:

$$(i,r) \rightarrow (j,s) \iff c_{ij} \neq 0 \text{ and } s = r + d_i c_{ij}$$

•
$$z := \{z_{i,r} \mid (i,r) \in V\}$$
, set of indeterminates

- $C = (c_{ij} | i, j \in I)$, Cartan matrix
- Γ , quiver with vertex set $V := I \times \mathbb{Z}$, and arrows:

$$(i,r) \rightarrow (j,s) \iff c_{ij} \neq 0 \text{ and } s = r + d_i c_{ij}$$

•
$$z := \{z_{i,r} \mid (i,r) \in V\}$$
, set of indeterminates

Definition

 \mathscr{A} , cluster algebra with initial seed (Z, Γ)

$$C = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

Type A₂

Type *B*₂

$$C = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$

Type B₂

$$C = \begin{pmatrix} 2 & -1 \\ -2 & 2 \end{pmatrix}$$

• simple object $M \in \mathscr{C} \rightsquigarrow q$ -character $\chi_q(M)$

simple object *M* ∈ *C* → *q*-character χ_q(*M*) : a Laurent polynomial in some variables Y_{i,a}

- simple object *M* ∈ *C* → *q*-character χ_q(*M*) : a Laurent polynomial in some variables Y_{i,a}
- cluster variable $x \in \mathscr{A}$

- simple object *M* ∈ *C* → *q*-character χ_q(*M*) : a Laurent polynomial in some variables Y_{i,a}
- cluster variable $x \in \mathscr{A}$: a Laurent polynomial in the $z_{i,r}$

- simple object M ∈ C → q-character χ_q(M) : a Laurent polynomial in some variables Y_{i,a}
- cluster variable $x \in \mathscr{A}$: a Laurent polynomial in the $z_{i,r}$

Main observation

Under the change of variables

$$Y_{i,q^s} = \frac{Z_{i,s-d_i}}{Z_{i,s+d_i}}$$

the *q*-characters of certain simple objects of \mathscr{C} become equal to certain cluster variables of \mathscr{A} .

Example in type A₂

Example in type A₂

• Fundamental module $L(Y_{1,q})$:

$$\chi_q(L(Y_{1,q})) = Y_{1,q} + Y_{1,q^3}^{-1}Y_{2,q^2} + Y_{2,q^4}^{-1}$$

Example in type A₂

• Fundamental module $L(Y_{1,q})$:

$$\chi_q(L(Y_{1,q})) = Y_{1,q} + Y_{1,q^3}^{-1}Y_{2,q^2} + Y_{2,q^4}^{-1}$$

• Cluster variable obtained by mutation at (1,2) followed by mutation at (2,3):

$$(\mu_{(2,3)} \circ \mu_{(1,2)})(z_{2,3}) = \frac{z_{1,0}}{z_{1,2}} + \frac{z_{1,4}z_{2,1}}{z_{1,2}z_{2,3}} + \frac{z_{2,5}}{z_{2,3}}$$

Theorem (Hernandez-L 2013)

The "main observation" holds for all Kirillov-Reshetikhin modules:

$$W_{k,a}^{(i)} := L(Y_{i,a}Y_{i,aq^{2d_i}}\cdots Y_{i,aq^{(2k-2)d_i}})$$

Theorem (Hernandez-L 2013)

The "main observation" holds for all Kirillov-Reshetikhin modules:

$$W_{k,a}^{(i)} := L(Y_{i,a}Y_{i,aq^{2d_i}}\cdots Y_{i,aq^{(2k-2)d_i}})$$

A simple object $S \in \mathscr{C}$ is called "real" if $S \otimes S$ is simple.

Theorem (Hernandez-L 2013)

The "main observation" holds for all Kirillov-Reshetikhin modules:

$$W_{k,a}^{(i)} := L(Y_{i,a}Y_{i,aq^{2d_i}}\cdots Y_{i,aq^{(2k-2)d_i}})$$

A simple object $S \in \mathscr{C}$ is called "real" if $S \otimes S$ is simple.

Conjecture

The *q*-characters of real simple objects of \mathscr{C} are equal to certain cluster monomials of \mathscr{A} (under the above change of variables).

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C}

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

What is their meaning in terms of $U_q(L\mathfrak{g})$?

Note: Some cluster variables of \mathscr{A} do not correspond to simple objects of \mathscr{C} (e.g. initial cluster variables, one-step mutations, ...).

What is their meaning in terms of $U_q(L\mathfrak{g})$?

Maybe one should consider a bigger category $\mathscr{O} \supset \mathscr{C}$?

What is their meaning in terms of $U_q(L\mathfrak{g})$?

Maybe one should consider a bigger category $\mathscr{O} \supset \mathscr{C}$?

Such a category has been introduced by Hernandez and Jimbo (2012), and further studied by Frenkel and Hernandez (2015, 2016).

What is their meaning in terms of $U_q(L\mathfrak{g})$?

Maybe one should consider a bigger category $\mathscr{O} \supset \mathscr{C}$?

Such a category has been introduced by Hernandez and Jimbo (2012), and further studied by Frenkel and Hernandez (2015, 2016).

Objects of \mathcal{O} are $U_q(\mathfrak{b})$ -modules, where $\mathfrak{b} \subset L\mathfrak{g}$ is a Borel subalgebra.

What is their meaning in terms of $U_q(L\mathfrak{g})$?

Maybe one should consider a bigger category $\mathcal{O} \supset \mathcal{C}$?

Such a category has been introduced by Hernandez and Jimbo (2012), and further studied by Frenkel and Hernandez (2015, 2016).

Objects of \mathcal{O} are $U_q(\mathfrak{b})$ -modules, where $\mathfrak{b} \subset L\mathfrak{g}$ is a Borel subalgebra. They are infinite-dimensional in general.

What is their meaning in terms of $U_q(L\mathfrak{g})$?

Maybe one should consider a bigger category $\mathcal{O} \supset \mathcal{C}$?

Such a category has been introduced by Hernandez and Jimbo (2012), and further studied by Frenkel and Hernandez (2015, 2016).

Objects of \mathcal{O} are $U_q(\mathfrak{b})$ -modules, where $\mathfrak{b} \subset L\mathfrak{g}$ is a Borel subalgebra. They are infinite-dimensional in general.

The building blocks of \mathcal{O} are the prefundamental modules:

$$L^+_{i,a}, \quad L^-_{i,a}, \qquad (i \in I, \ a \in \mathbb{C}^*)$$

• $U_q(\mathfrak{sl}_2)$: generators e, f, k (k invertible), relations:

$$ke = q^2 ek$$
, $kf = q^{-2} fk$, $[e, f] = \frac{k - k^{-1}}{q - q^{-1}}$

• $U_q(\mathfrak{sl}_2)$: generators e, f, k (k invertible), relations:

$$ke = q^2 ek$$
, $kf = q^{-2}fk$, $[e, f] = \frac{k - k^{-1}}{q - q^{-1}}$

• $U_q(\widehat{\mathfrak{sl}}_2)$: generators $e_0, e_1, f_0, f_1, k_0, k_1$ (k_0, k_1 invertible), similar relations given by Cartan matrix $C = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$

• $U_q(\mathfrak{sl}_2)$: generators e, f, k (k invertible), relations:

$$ke = q^2 ek$$
, $kf = q^{-2} fk$, $[e, f] = \frac{k - k^{-1}}{q - q^{-1}}$

- $U_q(\widehat{\mathfrak{sl}}_2)$: generators $e_0, e_1, f_0, f_1, k_0, k_1$ (k_0, k_1 invertible), similar relations given by Cartan matrix $C = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$
- $U_q(L\mathfrak{sl}_2)$: quotient of $U_q(\widehat{\mathfrak{sl}}_2)$ by $k_0k_1 = 1$.

• $U_q(\mathfrak{sl}_2)$: generators e, f, k (k invertible), relations:

$$ke = q^2 ek$$
, $kf = q^{-2} fk$, $[e, f] = \frac{k - k^{-1}}{q - q^{-1}}$

- $U_q(\widehat{\mathfrak{sl}}_2)$: generators $e_0, e_1, f_0, f_1, k_0, k_1$ (k_0, k_1 invertible), similar relations given by Cartan matrix $C = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$
- $U_q(L\mathfrak{sl}_2)$: quotient of $U_q(\widehat{\mathfrak{sl}}_2)$ by $k_0k_1 = 1$.
- for $a \in \mathbb{C}^*$, evaluation homomorphism $ev_a : U_q(L\mathfrak{sl}_2) \to U_q(\mathfrak{sl}_2)$

$$e_1 \mapsto e, \quad f_1 \mapsto f, \quad k_1 \mapsto k, \quad e_0 \mapsto q^{-1}a^{-1}f, \quad f_0 \mapsto qae$$

• V_n : $U_q(\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n)

$$ev_i = v_{i-1}, \quad fv_i = [i+1][n-i]v_{i+1}, \quad kv_i = q^{n-2i}v_i$$

•
$$V_n$$
: $U_q(\mathfrak{sl}_2)$ -module with basis $(v_0, v_1, ..., v_n)$
 $ev_i = v_{i-1}, \quad fv_i = [i+1][n-i]v_{i+1}, \quad kv_i = q^{n-2i}v_i$

• $V_n(a)$: $U_q(L\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n)

$$e_1 v_i = v_{i-1}, \quad e_0 v_i = q^{-1} a^{-1} [i+1] [n-i] v_{i+1}, \quad k_1 v_i = q^{n-2i} v_i$$

•
$$V_n$$
: $U_q(\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n)
 $ev_i = v_{i-1}, \quad fv_i = [i+1][n-i]v_{i+1}, \quad kv_i = q^{n-2i}v_i$

• $V_n(a)$: $U_q(L\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n) $e_1 v_i = v_{i-1}, \quad e_0 v_i = q^{-1} a^{-1} [i+1] [n-i] v_{i+1}, \quad k_1 v_i = q^{n-2i} v_i$

• Take $a = q^{n-1}$, |q| > 1 and "let $n \to \infty$ ": L^- with basis $(v_i \mid i \in \mathbb{Z}_{\geq 0})$

$$e_1 v_i = v_{i-1}, \quad e_0 v_i = [i+1] \frac{q^{-i}}{q-q^{-1}} v_{i+1},$$

•
$$V_n$$
: $U_q(\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n)
 $ev_i = v_{i-1}, \quad fv_i = [i+1][n-i]v_{i+1}, \quad kv_i = q^{n-2i}v_i$

• $V_n(a)$: $U_q(L\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n) $e_1 v_i = v_{i-1}, \quad e_0 v_i = q^{-1} a^{-1} [i+1] [n-i] v_{i+1}, \quad k_1 v_i = q^{n-2i} v_i$

• Take $a = q^{n-1}$, |q| > 1 and "let $n \to \infty$ ": L^- with basis $(v_i \mid i \in \mathbb{Z}_{\geq 0})$ $e_1 v_i = v_{i-1}, \quad e_0 v_i = [i+1] \frac{q^{-i}}{q-q^{-1}} v_{i+1}, \quad k_1 v_i = q^{-2i} v_i$

- V_n : $U_q(\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n) $ev_i = v_{i-1}, \quad fv_i = [i+1][n-i]v_{i+1}, \quad kv_i = q^{n-2i}v_i$
- $V_n(a)$: $U_q(L\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n) $e_1 v_i = v_{i-1}, \quad e_0 v_i = q^{-1} a^{-1} [i+1] [n-i] v_{i+1}, \quad k_1 v_i = q^{n-2i} v_i$
- Take $a = q^{n-1}$, |q| > 1 and "let $n \to \infty$ ": L^- with basis $(v_i \mid i \in \mathbb{Z}_{\geq 0})$ $e_1 v_i = v_{i-1}, \quad e_0 v_i = [i+1] \frac{q^{-i}}{q-q^{-1}} v_{i+1}, \quad k_1 v_i = q^{-2i} v_i$
- $U_q(\mathfrak{b})$, subalgebra of $U_q(L\mathfrak{g})$ generated by e_0, e_1, k_1 .

- V_n : $U_q(\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n) $ev_i = v_{i-1}, \quad fv_i = [i+1][n-i]v_{i+1}, \quad kv_i = q^{n-2i}v_i$
- $V_n(a)$: $U_q(L\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n) $e_1 v_i = v_{i-1}, \quad e_0 v_i = q^{-1} a^{-1} [i+1] [n-i] v_{i+1}, \quad k_1 v_i = q^{n-2i} v_i$
- Take $a = q^{n-1}$, |q| > 1 and "let $n \to \infty$ ": L^- with basis $(v_i \mid i \in \mathbb{Z}_{\geq 0})$ $e_1 v_i = v_{i-1}, \quad e_0 v_i = [i+1] \frac{q^{-i}}{q-q^{-1}} v_{i+1}, \quad k_1 v_i = q^{-2i} v_i$
- U_q(b), subalgebra of U_q(Lg) generated by e₀, e₁, k₁.
 L⁻ is a U_q(b)-module. Cannot be extended to a U_q(Lg)-module.

• V_n : $U_q(\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n)

1

$$ev_i = v_{i-1}, \quad fv_i = [i+1][n-i]v_{i+1}, \quad kv_i = q^{n-2i}v_i$$

• $V_n(a)$: $U_q(\mathfrak{sl}_2)$ -module with basis (v_0, v_1, \dots, v_n)

$$e_1 v_i = v_{i-1}, \quad e_0 v_i = q^{-1} a^{-1} [i+1] [n-i] v_{i+1}, \quad k_1 v_i = q^{n-2i} v_i$$

• Take $a = q^{-n-1}$, |q| < 1 and "let $n \to \infty$ ": L^- with basis $(v_i \mid i \in \mathbb{Z}_{\geq 0})$

$$e_1 v_i = v_{i-1}, \quad e_0 v_i = [i+1] \frac{-q^{+i}}{q-q^{-1}} v_{i+1}, \quad k_1 v_i = q^{-2i} v_i$$

- $U_q(\mathfrak{b})$, subalgebra of $U_q(L\mathfrak{g})$ generated by e_0, e_1, k_1 .
- L^+ is a $U_q(\mathfrak{b})$ -module. Cannot be extended to a $U_q(L\mathfrak{g})$ -module.

• L^+ and L^- are quite different

- L^+ and L^- are quite different
- *U_q*(𝔥) ⊃ commutative subalgebra generated by φ_k (k ∈ ℤ_{≥0})

$$\phi_0 = k_1, \quad \phi_1 = (q - q^{-1})[e_1, e_0 k_1], \quad \dots$$

- L^+ and L^- are quite different
- *U_q*(𝔥) ⊃ commutative subalgebra generated by φ_k (k ∈ ℤ_{≥0})

$$\phi_0 = k_1, \quad \phi_1 = (q - q^{-1})[e_1, e_0 k_1], \quad \dots$$

•
$$\phi(u) = \sum_{k\geq 0} \phi_k u^k$$

- L^+ and L^- are quite different
- *U_q*(𝔥) ⊃ commutative subalgebra generated by φ_k (k ∈ ℤ_{≥0})

$$\phi_0 = k_1, \quad \phi_1 = (q - q^{-1})[e_1, e_0 k_1], \quad \dots$$

•
$$\phi(u) = \sum_{k \ge 0} \phi_k u^k$$

• In $L^+: \phi(u) v_i = q^{-2i} (1-u) v_i$

- L^+ and L^- are quite different
- *U_q*(𝔥) ⊃ commutative subalgebra generated by φ_k (k ∈ ℤ_{≥0})

$$\phi_0 = k_1, \quad \phi_1 = (q - q^{-1})[e_1, e_0 k_1], \quad \dots$$

•
$$\phi(u) = \sum_{k \ge 0} \phi_k u^k$$

• In L^+ : $\phi(u)v_i = q^{-2i}(1-u)v_i$
• In L^- : $\phi(u)v_i = \frac{q^{-2i}(1-q^2u)}{(1-q^{-2i}u)(1-q^{-2i+2})}v_i$

- L^+ and L^- are quite different
- *U_q*(𝔥) ⊃ commutative subalgebra generated by φ_k (k ∈ ℤ_{≥0})

$$\phi_0 = k_1, \quad \phi_1 = (q - q^{-1})[e_1, e_0 k_1], \quad \dots$$

•
$$\phi(u) = \sum_{k \ge 0} \phi_k u^k$$

• In L^+ : $\phi(u)v_i = q^{-2i}(1-u)v_i$
• In L^- : $\phi(u)v_i = \frac{q^{-2i}(1-q^2u)}{(1-q^{-2i}u)(1-q^{-2i+2})}v_i$
• L^+ has highest ℓ -weight $1-u$

- L^+ and L^- are quite different
- *U_q*(𝔥) ⊃ commutative subalgebra generated by φ_k (k ∈ ℤ_{≥0})

$$\phi_0 = k_1, \quad \phi_1 = (q - q^{-1})[e_1, e_0 k_1], \quad \dots$$

•
$$\phi(u) = \sum_{k \ge 0} \phi_k u^k$$

• In L^+ : $\phi(u)v_i = q^{-2i}(1-u)v_i$
• In L^- : $\phi(u)v_i = \frac{q^{-2i}(1-q^2u)}{(1-q^{-2i}u)(1-q^{-2i+2})}v_i$
• L^+ has highest ℓ -weight $1-u$
• L^- has highest ℓ -weight $\frac{1}{1-u}$

• shift automorphism: τ_a of $U_q(\mathfrak{b})$: $e_1 \mapsto e_1, k_1 \mapsto k_1, e_0 \mapsto ae_0$

- shift automorphism: τ_a of $U_q(\mathfrak{b})$: $e_1 \mapsto e_1, k_1 \mapsto k_1, e_0 \mapsto ae_0$
- \rightsquigarrow positive and negative prefundamental $U_q(\mathfrak{b})$ -modules:

$$L_a^+$$
, highest ℓ -weight $1 - au$
 L_a^- , highest ℓ -weight $\frac{1}{1 - au}$

- shift automorphism: τ_a of $U_q(\mathfrak{b})$: $e_1 \mapsto e_1, k_1 \mapsto k_1, e_0 \mapsto ae_0$
- \rightarrow positive and negative prefundamental $U_q(\mathfrak{b})$ -modules:

$$L_a^+$$
, highest ℓ -weight $1 - au$
 L_a^- , highest ℓ -weight $\frac{1}{1 - au}$

If λ = bω is an sl₂-weight, also have the one-dimensional U_q(b)-module [λ]:

$$e_0 = e_1 = 0, \quad k_1 = q^b.$$

 $[\lambda]$ is a zero prefundamental module.

- shift automorphism: τ_a of $U_q(\mathfrak{b})$: $e_1 \mapsto e_1, k_1 \mapsto k_1, e_0 \mapsto ae_0$
- \rightarrow positive and negative prefundamental $U_q(\mathfrak{b})$ -modules:

$$L_a^+$$
, highest ℓ -weight $1 - au$
 L_a^- , highest ℓ -weight $\frac{1}{1 - au}$

If λ = bω is an sl₂-weight, also have the one-dimensional U_q(b)-module [λ]:

$$e_0 = e_1 = 0, \quad k_1 = q^b.$$

 $[\lambda]$ is a zero prefundamental module.

 Simple objects of category 𝒪 of Hernandez-Jimbo are subquotients of tensor products of prefundamental modules.

- shift automorphism: τ_a of $U_q(\mathfrak{b})$: $e_1 \mapsto e_1, k_1 \mapsto k_1, e_0 \mapsto ae_0$
- \rightsquigarrow positive and negative prefundamental $U_q(\mathfrak{b})$ -modules:

$$L_a^+$$
, highest ℓ -weight $1 - au$
 L_a^- , highest ℓ -weight $\frac{1}{1 - au}$

If λ = bω is an sl₂-weight, also have the one-dimensional U_q(b)-module [λ]:

$$e_0 = e_1 = 0, \quad k_1 = q^b.$$

 $[\lambda]$ is a zero prefundamental module.

 Simple objects of category 𝒪 of Hernandez-Jimbo are subquotients of tensor products of prefundamental modules. They are parametrized by their highest ℓ-weight Ψ ∈ ℂ(u).

• $U_q(L\mathfrak{g}) \supset U_q(\mathfrak{b})$: generators $e_0, e_1, \dots, e_r, k_1^{\pm 1}, \dots, k_r^{\pm 1}$

- $U_q(L\mathfrak{g}) \supset U_q(\mathfrak{b})$: generators $e_0, e_1, \ldots, e_r, k_1^{\pm 1}, \ldots, k_r^{\pm 1}$
- commutative subalgebra : $\phi_{1,k}, \ldots, \phi_{r,k}, \ (k \in \mathbb{Z}_{>0})$

- $U_q(L\mathfrak{g}) \supset U_q(\mathfrak{b})$: generators $e_0, e_1, \ldots, e_r, k_1^{\pm 1}, \ldots, k_r^{\pm 1}$
- commutative subalgebra : $\phi_{1,k}, \ldots, \phi_{r,k}, \ (k \in \mathbb{Z}_{>0})$
- highest ℓ -weight $U_q(\mathfrak{b})$ -module: $V = U_q(\mathfrak{b})v$ such that

$$e_i v = 0, \quad \phi_i(u) v = \psi_i(u) v, \qquad (1 \le i \le r)$$

for some $\Psi = (\psi_1, \ldots, \psi_r) \in \mathbb{C}[[u]]^r$.

Arbitrary type X_r

- $U_q(L\mathfrak{g}) \supset U_q(\mathfrak{b})$: generators $e_0, e_1, \ldots, e_r, k_1^{\pm 1}, \ldots, k_r^{\pm 1}$
- commutative subalgebra : $\phi_{1,k}, \ldots, \phi_{r,k}, \ (k \in \mathbb{Z}_{>0})$
- highest ℓ -weight $U_q(\mathfrak{b})$ -module: $V = U_q(\mathfrak{b})v$ such that

$$e_i v = 0, \quad \phi_i(u) v = \psi_i(u) v, \qquad (1 \le i \le r)$$

for some $\Psi = (\psi_1, \ldots, \psi_r) \in \mathbb{C}[[u]]^r$.

• Hernandez-Jimbo: highest ℓ -weight modules

$$\begin{array}{ll} L_{i,a}^+, & \Psi_{i,a}^+ = (0, \dots, 1 - au, \dots, 0), & (1 \le i \le r, \ a \in \mathbb{C}^*) \\ L_{i,a}^-, & \Psi_{i,a}^- = (0, \dots, \frac{1}{1 - au}, \dots, 0), & (1 \le i \le r, \ a \in \mathbb{C}^*) \end{array}$$

- $U_q(L\mathfrak{g}) \supset U_q(\mathfrak{b})$: generators $e_0, e_1, \ldots, e_r, k_1^{\pm 1}, \ldots, k_r^{\pm 1}$
- commutative subalgebra : $\phi_{1,k}, \ldots, \phi_{r,k}, \ (k \in \mathbb{Z}_{>0})$
- highest ℓ -weight $U_q(\mathfrak{b})$ -module: $V = U_q(\mathfrak{b})v$ such that

$$e_i v = 0, \quad \phi_i(u) v = \psi_i(u) v, \qquad (1 \le i \le r)$$

for some $\Psi = (\psi_1, \ldots, \psi_r) \in \mathbb{C}[[u]]^r$.

• Hernandez-Jimbo: highest ℓ -weight modules

$$\begin{array}{ll} L^+_{i,a}, & \Psi^+_{i,a} = (0, \dots, 1 - au, \dots, 0), & (1 \le i \le r, \ a \in \mathbb{C}^*) \\ L^-_{i,a}, & \Psi^-_{i,a} = (0, \dots, \frac{1}{1 - au}, \dots, 0), & (1 \le i \le r, \ a \in \mathbb{C}^*) \end{array}$$

• simple objects of \mathcal{O} are highest ℓ -weight modules with $\Psi \in \mathbb{C}(u)^r$. Notation: $L(\Psi)$.

- $U_q(L\mathfrak{g}) \supset U_q(\mathfrak{b})$: generators $e_0, e_1, \ldots, e_r, k_1^{\pm 1}, \ldots, k_r^{\pm 1}$
- commutative subalgebra : $\phi_{1,k}, \ldots, \phi_{r,k}, \ (k \in \mathbb{Z}_{>0})$
- highest ℓ -weight $U_q(\mathfrak{b})$ -module: $V = U_q(\mathfrak{b})v$ such that

$$e_i v = 0, \quad \phi_i(u) v = \psi_i(u) v, \qquad (1 \le i \le r)$$

for some $\Psi = (\psi_1, \ldots, \psi_r) \in \mathbb{C}[[u]]^r$.

• Hernandez-Jimbo: highest ℓ -weight modules

$$\begin{array}{ll} L^+_{i,a}, & \Psi^+_{i,a} = (0, \dots, 1 - au, \dots, 0), & (1 \le i \le r, \ a \in \mathbb{C}^*) \\ L^-_{i,a}, & \Psi^-_{i,a} = (0, \dots, \frac{1}{1 - au}, \dots, 0), & (1 \le i \le r, \ a \in \mathbb{C}^*) \end{array}$$

• simple objects of \mathcal{O} are highest ℓ -weight modules with $\Psi \in \mathbb{C}(u)^r$. Notation: $L(\Psi)$. They are subquotients of tensor products of $L_{i,a}^+, L_{i,a}^-$, and $[\lambda]$.

Finite-dimensional modules

•
$$Y_{i,a} := [\varpi_i] \Psi^+_{i,aq^{-d_i}} \Psi^-_{i,aq^{d_i}}$$

•
$$Y_{i,a} := [\varpi_i] \Psi^+_{i,aq^{-d_i}} \Psi^-_{i,aq^{d_i}}$$

L(Y_{i,a}) is finite-dimensional : restriction to U_q(b) of fundamental U_q(L(g))-module

•
$$Y_{i,a} := [\varpi_i] \Psi^+_{i,aq^{-d_i}} \Psi^-_{i,aq^{d_i}}$$

- L(Y_{i,a}) is finite-dimensional : restriction to U_q(b) of fundamental U_q(L(g))-module
- every simple finite-dimensional module in \mathcal{O} is of the form $[\lambda] \otimes L(m)$, where *m* is a product of $Y_{i,a}$'s.

•
$$Y_{i,a} := [\varpi_i] \Psi^+_{i,aq^{-d_i}} \Psi^-_{i,aq^{d_i}}$$

- L(Y_{i,a}) is finite-dimensional : restriction to U_q(b) of fundamental U_q(L(g))-module
- every simple finite-dimensional module in \mathcal{O} is of the form $[\lambda] \otimes L(m)$, where *m* is a product of $Y_{i,a}$'s.

• $\rightsquigarrow \mathscr{C} \subset \mathscr{O}$.

- $\Psi > 0$ if it is a product of $\Psi_{i,a}^+$, $Y_{i,a}$, and $[\lambda]$.
- *O*⁺ is the full subcategory of *O* whose objects have all their simple constituents of the form *L*(Ψ) with Ψ > 0.

- $\Psi > 0$ if it is a product of $\Psi_{i,a}^+$, $Y_{i,a}$, and $[\lambda]$.
- *O*⁺ is the full subcategory of *O* whose objects have all their simple constituents of the form L(Ψ) with Ψ > 0.
- Recall A: cluster algebra associated with Cartan matrix of g

- $\Psi > 0$ if it is a product of $\Psi_{i,a}^+$, $Y_{i,a}$, and $[\lambda]$.
- *O*⁺ is the full subcategory of *O* whose objects have all their simple constituents of the form L(Ψ) with Ψ > 0.
- Recall A: cluster algebra associated with Cartan matrix of g
- \mathcal{P} , group algebra of the weight lattice of \mathfrak{g} ,

- $\Psi > 0$ if it is a product of $\Psi_{i,a}^+$, $Y_{i,a}$, and $[\lambda]$.
- *O*⁺ is the full subcategory of *O* whose objects have all their simple constituents of the form L(Ψ) with Ψ > 0.
- Recall A: cluster algebra associated with Cartan matrix of g
- \mathscr{P} , group algebra of the weight lattice of \mathfrak{g} , $A := \mathscr{P} \otimes_{\mathbb{Z}} \mathscr{A}$

- $\Psi > 0$ if it is a product of $\Psi_{i,a}^+$, $Y_{i,a}$, and $[\lambda]$.
- *O*⁺ is the full subcategory of *O* whose objects have all their simple constituents of the form L(Ψ) with Ψ > 0.
- Recall A: cluster algebra associated with Cartan matrix of g
- \mathscr{P} , group algebra of the weight lattice of \mathfrak{g} , $A := \mathscr{P} \otimes_{\mathbb{Z}} \mathscr{A}$
- 𝒫⁺_ℤ, subcategory of 𝒫⁺ whose objects have all their simple constituents of the form L(Ψ) such that zeros and poles of ψ_i(u) are of the form q^r with (i, r) ∈ V.

- $\Psi > 0$ if it is a product of $\Psi_{i,a}^+$, $Y_{i,a}$, and $[\lambda]$.
- *O*⁺ is the full subcategory of *O* whose objects have all their simple constituents of the form L(Ψ) with Ψ > 0.
- Recall A: cluster algebra associated with Cartan matrix of g
- \mathscr{P} , group algebra of the weight lattice of \mathfrak{g} , $A := \mathscr{P} \otimes_{\mathbb{Z}} \mathscr{A}$
- 𝒫⁺_ℤ, subcategory of 𝒫⁺ whose objects have all their simple constituents of the form L(Ψ) such that zeros and poles of ψ_i(u) are of the form q^r with (i, r) ∈ V.

Theorem (Hernandez-L 2016)

The assignment

$$[(r/2d_i)\varpi_i] \otimes z_{i,r} \mapsto [L_{i,q^r}^+], \qquad ((i,r) \in V)$$

extends to an isomorphism from (a completion of) A to $K_0(\mathscr{O}_{\mathbb{Z}}^+)$.

•
$$\mu_{1,2}([-\varpi_1][L_{1,q^2}^+]) = \frac{[\varpi_1 - 3\varpi_2/2][L_{1,1}^+][L_{2,q^3}^+] + [-\varpi_1 - \varpi_2/2][L_{1,q^4}^+][L_{2,q^3}^+]}{[L_{1,q^2}^+]}$$

•
$$\mu_{1,2}([-\varpi_1][L_{1,q^2}^+]) = \frac{[\varpi_1 - 3\varpi_2/2][L_{1,1}^+][L_{2,q^3}^+] + [-\varpi_1 - \varpi_2/2][L_{1,q^4}^+][L_{2,q^3}^+]}{[L_{1,q^2}^+]}$$

= $[-3\varpi_2/2][L(Y_{1,q}\Psi_{2,q^3}^+)]$

•
$$\mu_{1,2}([-\varpi_1][L_{1,q^2}^+]) = \frac{[\varpi_1 - 3\varpi_2/2][L_{1,1}^+][L_{2,q^3}^+] + [-\varpi_1 - \varpi_2/2][L_{1,q^4}^+][L_{2,q^3}^+]}{[L_{1,q^2}^+]}$$

$$= [-3\varpi_2/2][L(Y_{1,q}\Psi_{2,q^3}^+)]$$

• $(\mu_{(2,3)} \circ \mu_{(1,2)})([-3\overline{\omega}_2/2][L_{2,q^3}^+]) =$

$$[\varpi_1] \frac{[L_{1,1}^+]}{[L_{1,q^2}^+]} + [\varpi_2 - \varpi_1] \frac{[L_{1,q^4}^+][L_{2,q}^+]}{[L_{1,q^2}^+][L_{2,q^3}^+]} + [-\varpi_2] \frac{[L_{2,q^5}^+]}{[L_{2,q^3}^+]}$$

•
$$\mu_{1,2}([-\varpi_1][L_{1,q^2}^+]) = \frac{[\varpi_1 - 3\varpi_2/2][L_{1,1}^+][L_{2,q^3}^+] + [-\varpi_1 - \varpi_2/2][L_{1,q^4}^+][L_{2,q^3}^+]}{[L_{1,q^2}^+]}$$

$$= [-3\varpi_2/2][L(Y_{1,q}\Psi_{2,q^3}^+)]$$

•
$$(\mu_{(2,3)} \circ \mu_{(1,2)})([-3\overline{\omega}_2/2][L^+_{2,q^3}]) =$$

$$\begin{split} [\varpi_1] \frac{[\mathcal{L}_{1,1}^+]}{[\mathcal{L}_{1,q^2}^+]} + [\varpi_2 - \varpi_1] \frac{[\mathcal{L}_{1,q^4}^+][\mathcal{L}_{2,q}^+]}{[\mathcal{L}_{1,q^2}^+][\mathcal{L}_{2,q^3}^+]} + [-\varpi_2] \frac{[\mathcal{L}_{2,q^5}^+]}{[\mathcal{L}_{2,q^3}^+]} \\ &= [\mathcal{L}(Y_{1,q})] \end{split}$$

Last equality follows from:

Theorem (Frenkel-Hernandez 2015)

Let $M \in \mathscr{C}$. If one replaces in the *q*-character of *M* every $Y_{i,a}$ by

$$[\varpi_i] rac{[L^+_{i,aq^{-d_i}}]}{[L^+_{i,aq^{d_i}}]}$$

and $\chi_q(M)$ by [M], one obtains a valid relation in the fraction field of $\mathcal{K}_0(\mathcal{O})$.

In the isomorphism $A \cong K_0(\mathscr{O}_{\mathbb{Z}}^+)$, the cluster variables correspond to the classes of the prime real simple modules (up to twist by some $[\lambda]$).

In the isomorphism $A \cong K_0(\mathscr{O}_{\mathbb{Z}}^+)$, the cluster variables correspond to the classes of the prime real simple modules (up to twist by some $[\lambda]$).

• The conjecture is true in type A_1 .

In the isomorphism $A \cong K_0(\mathscr{O}_{\mathbb{Z}}^+)$, the cluster variables correspond to the classes of the prime real simple modules (up to twist by some $[\lambda]$).

- The conjecture is true in type A_1 .
- The conjecture is true for one-step mutations for all types:

$$\mu_{i,r}(z_{i,r}) = [\cdots] \left[L \left(Y_{i,q^{r-d_i}} \prod_{j,c_{ji}<0} \Psi^+_{j,q^{r-d_j}c_{j,i}} \right) \right]$$

In the isomorphism $A \cong K_0(\mathscr{O}_{\mathbb{Z}}^+)$, the cluster variables correspond to the classes of the prime real simple modules (up to twist by some $[\lambda]$).

- The conjecture is true in type A_1 .
- The conjecture is true for one-step mutations for all types:

$$\mu_{i,r}(z_{i,r}) = [\cdots] \left[L \left(Y_{i,q^{r-d_i}} \prod_{j,c_{ji}<0} \Psi^+_{j,q^{r-d_j}c_{j,i}} \right) \right]$$

Theorem (Hernandez-Frenkel 2016)

The relations given by one-step mutations yield the proof of the Bethe Ansatz equations for quantum integrable models associated with $U_q(L\mathfrak{g})$.