A recursion formula for some character values of classical groups and some applications

Frank Lübeck (Lehrstuhl D für Mathematik, RWTH Aachen)

Samos, July 2016

(joint work with Gunter Malle)

Character table of S_n inside that of $GL_n(q)$

Consider $G = \operatorname{GL}_n(q) \leq \mathbf{G}^F$ with $\mathbf{G} = \operatorname{GL}_n(\bar{\mathbb{F}}_q)$.

 $\begin{aligned} \{F\text{-stable maximal tori}\}/\!\!\sim_G & \stackrel{\sim}{\longleftrightarrow} & \{(F-)\text{conjugacy classes of } S_n\} \\ & \stackrel{\sim}{\longleftrightarrow} & \text{partitions } \{\lambda \vdash n\} \end{aligned}$

$$\operatorname{Irr}(S_n) = \{\chi_\lambda \mid \lambda \vdash n\}$$

 $s \in G$ regular semisimple of type $\lambda :\Leftrightarrow C^0_{\mathbf{G}}(s)$ is maximal torus of type λ

$$\operatorname{Irr}(G) = \bigcup_{s} \mathcal{E}(G, s)$$

Unipotent characters: $\mathcal{E}(G, 1) = \{\chi_{1,\lambda} \mid \lambda \vdash n\}$

Observation.

Let $t_{\mu} \in G$ be regular semisimple of type $\mu \vdash n$, $\pi_{\mu} \in S_n$ of cycle type μ , and let $\lambda \vdash n$. Then

$$\chi_{1,\lambda}(t_{\mu}) = \chi_{\lambda}(\pi_{\mu}).$$

(This holds for all q and all regular semisimple classes of that type.)

Classical groups

From now

$$G = \begin{cases} \operatorname{Spin}_{2n+1}(q) &\subset \operatorname{Spin}_{2n+1}(\bar{\mathbb{F}}_q), & n \ge 2 & (\operatorname{type} B_n) \\ \operatorname{Sp}_{2n}(q) &\subset \operatorname{Sp}_{2n}(\bar{\mathbb{F}}_q), & n \ge 3 & (\operatorname{type} C_n) \\ \operatorname{Spin}_{2n}^{\pm}(q) &\subset \operatorname{Spin}_{2n}(\bar{\mathbb{F}}_q), & n \ge 4 & (\operatorname{type} D_n, {}^2\!D_n) \end{cases}$$

 $\{F\text{-conjugacy classes of Weyl group } W\} \xrightarrow{\sim} \{(\lambda, \mu) \vdash n\}$ (only μ with even/odd number of entries in types D_n , 2D_n ; degenerate cases in D_n)

 $\mathcal{E}(G,1) \quad \stackrel{\sim}{\longleftrightarrow} \quad \{\chi_{\mathcal{S}} \mid \mathcal{S} \text{ certain symbols of rank } n\}$

Symbols

$$S = \begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \lambda_1 < \lambda_2 < \dots < \lambda_r \\ \mu_1 < \mu_2 < \dots < \mu_s \end{pmatrix}$$

"=" $\begin{pmatrix} Y \\ X \end{pmatrix}$ "=" $\begin{pmatrix} 0 < \lambda_1 + 1 < \lambda_2 + 1 < \dots < \lambda_r + 1 \\ 0 < \mu_1 + 1 < \mu_2 + 1 < \dots < \mu_s + 1 \end{pmatrix}$

with defect |r - s| odd (B_n, C_n) , 0 mod 4 (D_n) , 2 mod 4 $({}^2D_n)$ (degenerate symbols $\begin{pmatrix} X \\ X \end{pmatrix}$ correspond to two characters, $\chi_{\mathcal{S}}$ denotes their sum)

Removing *d***-hook** *h* from $S, S \setminus h$: Remove an entry λ_i from X such that $\lambda_i \geq d$ and $\lambda_i - d$ is not in X and add $\lambda_i - d$ to X. And the same for Y.

Removing *d*-cohook *c* from S, $S \setminus c$: Remove an entry λ_i from *X* such that $\lambda_i \geq d$ and $\lambda_i - d$ is not in *Y* and add $\lambda_i - d$ to *Y*. And the same for *X*, *Y* interchanged.

If S is of rank n, h a d-hook, c a d-cohook then $S \setminus h$ and $S \setminus c$ have rank n - d.

Murnaghan-Nakayama formula for classical groups In this theorem G can be any group of type B_n , C_n , D_n , 2D_n .

Theorem

Let $t \in G$ be regular semisimple of type (λ, μ) .

(a) If λ contains d then

$$\chi_{\mathcal{S}}(t) = \sum_{h} \varepsilon_h \chi_{\mathcal{S} \setminus h}(t),$$

where the sum is over all d-hooks h of S.

(b) Similar statement with μ contains d and cohooks . . .

 ε_h is a sign associated to h.

 $S \setminus h$ is symbol of unipotent character of Levi subgroup of rank n - d, (centralizer of torus of order $q^d - 1$).

 $t \in L$ is regular semisimple of type $(\lambda \setminus d, \mu)$.

Proof. Character formula for ${}^*R_L^G$; theorem of Asai on decomposition of ${}^*R_L^G(\chi_S)$ where L is centralizer of $(q^d \pm 1)$ -torus.

Regular semisimple elements

Lemma

 $G \in \{Sp_{2n}(q), Spin_{2n+1}(q), Spin_{2n}^{\pm}(q)\}\$ contains regular semisimple elements of type $((\lambda_1, \ldots, \lambda_r), (\mu_1, \ldots, \mu_s))$ in these cases:

(a) $q > 3, \lambda_1 < \lambda_2 < \dots < \lambda_r, \mu_1 < \mu_2 < \dots < \mu_s.$

(b) $q \in \{2,3\}, \lambda_1 < \lambda_2 < \cdots < \lambda_r, \mu_1 < \mu_2 < \cdots < \mu_s \text{ with } \lambda_i \neq 2 \text{ (type } D_n, {}^2D_n)\text{), resp. } \lambda_i \notin \{1,2\} \text{ (type } B_n, C_n).$

(c) In type $D_n: 2 < \lambda_1 < \cdots < \lambda_r$ and $1 = \mu_1 = \mu_2 < \mu_3 < \cdots < \mu_s$.

ℓ -singular elements

 $\ell: \text{ odd prime, } \ell \nmid q$ $d = \text{ order of } q \mod \ell \quad (\text{so } \ell \mid (q^d - 1))$

If d odd:
$$\ell \mid (q^k - 1) \Leftrightarrow d \mid k$$

If $d = 2e$ even: $\ell \mid (q^k - 1) \Leftrightarrow d \mid k$
 $\ell \mid (q^k + 1) \Leftrightarrow e \mid k$ and k/e odd

 $T \leq G$ maximal torus of type $((\lambda_1, \ldots, \lambda_r), (\mu_1, \ldots, \mu_s))$, then

$$|T| = \prod_{\lambda_i} (q^{\lambda_i} - 1) \prod_{\mu_i} (q^{\mu_i} + 1)$$

Zeroes of characters

Now assume: the Sylow- ℓ -subgroup of G is not cyclic

Theorem

Let $\chi \in Irr(G)$ such that $\chi(t) \neq 0$ on all ℓ -singular regular semisimple elements t. Then one of the following holds:

- (a) If χ is not unipotent then $G \in \{Sp_4(2), Sp_8(2)\}$.
- (b) χ is the trivial or Steinberg character.
- (c) χ or its Alvis-Curtis dual is a unipotent character χ_S :

 $(1) \ G = Sp_{2n}(q) \ or \ G = Spin_{2n+1}(q), \ d \ odd, \ n = 2d+r, \ 0 \leq r < d \ and$

$$\mathcal{S} = \left(\begin{array}{ccccccc} 1 & 2 & \dots & d-r-1 & d & 2d \\ 0 & 1 & \dots & d-r-1 & \end{array}\right).$$

(2)-(6) Similar for other types, d odd or even. (7)-(10) Cases for q = 2, e.g., $G = Sp_6(2)$, d = 2 and $S = \begin{pmatrix} 013 \\ - \end{pmatrix}$.

Classifying $\ell\text{-modular}$ endotrivial modules

A simple ℓ -modular endotrivial representation of G can be lifted to a characteristic 0 representation with character χ such that

- ► $|\chi(g)| = 1$ for all ℓ -singular elements $g \in G$
- $\chi(1) \equiv \pm 1 \mod |G|_{\ell}$
- χ is irreducible modulo ℓ

Theorem

Let G and ℓ be as before. If $\chi \in Irr(G)$ is the lifted character of a non-trivial simple ℓ -modular endotrivial module then $G = Sp_8(2)$, $\chi = \chi_S$ with $S = \begin{pmatrix} 01 \\ 4 \end{pmatrix}$.

Constituents of 1-PIMs

(Answering a question of Külshammer, Koshitani, Sambale.)

Theorem

Let G, ℓ be as before. Then the ℓ -modular projective cover of the trivial character has at least three constituents.

Ευχαριστώ πολύ

