A recursion formula for some character values of classical groups and some applications

Frank Lübeck
(Lehrstuhl D für Mathematik, RWTH Aachen)

Samos, July 2016
(joint work with Gunter Malle)

Character table of S_{n} inside that of $\mathrm{GL}_{n}(q)$

Consider $G=\mathrm{GL}_{n}(q) \leq \mathbf{G}^{F}$ with $\mathbf{G}=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$.
$\{F$-stable maximal tori $\} / \sim_{G} \underset{\sim}{\underset{\sim}{\sim}}\left\{(F-)\right.$ conjugacy classes of $\left.S_{n}\right\}$ $\stackrel{\sim}{\longleftrightarrow}$ partitions $\{\lambda \vdash n\}$

$$
\operatorname{Irr}\left(S_{n}\right)=\left\{\chi_{\lambda} \mid \lambda \vdash n\right\}
$$

$s \in G$ regular semisimple of type $\lambda: \Leftrightarrow C_{\mathbf{G}}^{0}(s)$ is maximal torus of type λ

$$
\operatorname{Irr}(G)=\bigcup_{s} \mathcal{E}(G, s)
$$

Unipotent characters: $\mathcal{E}(G, 1)=\left\{\chi_{1, \lambda} \mid \lambda \vdash n\right\}$

Observation.
Let $t_{\mu} \in G$ be regular semisimple of type $\mu \vdash n, \pi_{\mu} \in S_{n}$ of cycle type μ, and let $\lambda \vdash n$. Then

$$
\chi_{1, \lambda}\left(t_{\mu}\right)=\chi_{\lambda}\left(\pi_{\mu}\right)
$$

(This holds for all q and all regular semisimple classes of that type.)

Classical groups

From now

$$
G=\left\{\begin{array}{lllll}
\operatorname{Spin}_{2 n+1}(q) & \subset & \operatorname{Spin}_{2 n+1}\left(\overline{\mathbb{F}}_{q}\right), & n \geq 2 & \left(\text { type } B_{n}\right) \\
\operatorname{Sp}_{2 n}(q) & \subset & \operatorname{Sp}_{2 n}\left(\overline{\mathbb{F}}_{q}\right), & n \geq 3 & \left(\text { type } C_{n}\right) \\
\operatorname{Spin}_{2 n}^{ \pm}(q) & \subset & \operatorname{Spin}_{2 n}\left(\overline{\mathbb{F}}_{q}\right), & n \geq 4 & \left(\text { type } D_{n},{ }^{2} D_{n}\right)
\end{array}\right.
$$

$$
\{F \text {-conjugacy classes of Weyl group } W\} \quad \sim \quad\{(\lambda, \mu) \vdash n\}
$$

(only μ with even/odd number of entries in types $D_{n},{ }^{2} D_{n}$; degenerate cases in D_{n})

$$
\mathcal{E}(G, 1) \quad \sim \quad\left\{\chi_{\mathcal{S}} \mid \mathcal{S} \text { certain symbols of rank } n\right\}
$$

Symbols

$$
\begin{gathered}
S=\binom{X}{Y}=\binom{\lambda_{1}<\lambda_{2}<\ldots<\lambda_{r}}{\mu_{1}<\mu_{2}<\ldots<\mu_{s}} \\
"="\binom{Y}{X} "="\binom{0<\lambda_{1}+1<\lambda_{2}+1<\ldots<\lambda_{r}+1}{0<\mu_{1}+1<\mu_{2}+1<\ldots<\mu_{s}+1}
\end{gathered}
$$

with defect $|r-s|$ odd $\left(B_{n}, C_{n}\right), 0 \bmod 4\left(D_{n}\right), 2 \bmod 4\left({ }^{2} D_{n}\right)$ (degenerate symbols $\binom{X}{X}$ correspond to two characters, $\chi_{\mathcal{S}}$ denotes their sum)
Removing d-hook h from $\mathcal{S}, \mathcal{S} \backslash h$: Remove an entry λ_{i} from X such that $\lambda_{i} \geq d$ and $\lambda_{i}-d$ is not in X and add $\lambda_{i}-d$ to X. And the same for Y.

Removing d-cohook c from $\mathcal{S}, \mathcal{S} \backslash c$: Remove an entry λ_{i} from X such that $\lambda_{i} \geq d$ and $\lambda_{i}-d$ is not in Y and add $\lambda_{i}-d$ to Y. And the same for X, Y interchanged.

If \mathcal{S} is of rank n, h a d-hook, c a d-cohook then $\mathcal{S} \backslash h$ and $\mathcal{S} \backslash c$ have rank $n-d$.

Murnaghan-Nakayama formula for classical groups

 In this theorem G can be any group of type $B_{n}, C_{n}, D_{n},{ }^{2} D_{n}$.Theorem
Let $t \in G$ be regular semisimple of type (λ, μ).
(a) If λ contains d then

$$
\chi_{\mathcal{S}}(t)=\sum_{h} \varepsilon_{h} \chi_{\mathcal{S} \backslash h}(t),
$$

where the sum is over all d-hooks h of \mathcal{S}.
(b) Similar statement with μ contains d and cohooks . . .
ε_{h} is a sign associated to h.
$\mathcal{S} \backslash h$ is symbol of unipotent character of Levi subgroup of rank $n-d$, (centralizer of torus of order $q^{d}-1$).
$t \in L$ is regular semisimple of type $(\lambda \backslash d, \mu)$.
Proof. Character formula for ${ }^{*} R_{L}^{G}$; theorem of Asai on decomposition of ${ }^{*} R_{L}^{G}\left(\chi_{\mathcal{S}}\right)$ where L is centralizer of $\left(q^{d} \pm 1\right)$-torus.

Regular semisimple elements

Lemma
$G \in\left\{\operatorname{Sp}_{2 n}(q), \operatorname{Spin}_{2 n+1}(q), \operatorname{Spin}_{2 n}^{ \pm}(q)\right\}$ contains regular semisimple elements of type $\left(\left(\lambda_{1}, \ldots, \lambda_{r}\right),\left(\mu_{1}, \ldots, \mu_{s}\right)\right)$ in these cases:
(a) $q>3, \lambda_{1}<\lambda_{2}<\cdots<\lambda_{r}, \mu_{1}<\mu_{2}<\cdots<\mu_{s}$.
(b) $q \in\{2,3\}, \lambda_{1}<\lambda_{2}<\cdots<\lambda_{r}, \mu_{1}<\mu_{2}<\cdots<\mu_{s}$ with $\lambda_{i} \neq 2$ (type $\left.D_{n},{ }^{2} D_{n}\right)$), resp. $\lambda_{i} \notin\{1,2\}$ (type B_{n}, C_{n}).
(c) In type $D_{n}: 2<\lambda_{1}<\cdots<\lambda_{r}$ and $1=\mu_{1}=\mu_{2}<\mu_{3}<\cdots<\mu_{s}$.

ℓ-singular elements

ℓ : odd prime, $\ell \nmid q$
$d=$ order of $q \bmod \ell \quad\left(\right.$ so $\left.\ell \mid\left(q^{d}-1\right)\right)$

$$
\begin{array}{ll}
\text { If } d \text { odd: } & \ell\left|\left(q^{k}-1\right) \Leftrightarrow d\right| k \\
\text { If } d=2 e \text { even: } & \ell\left|\left(q^{k}-1\right) \Leftrightarrow d\right| k \\
& \ell\left|\left(q^{k}+1\right) \Leftrightarrow e\right| k \text { and } k / e \text { odd }
\end{array}
$$

$T \leq G$ maximal torus of type $\left(\left(\lambda_{1}, \ldots, \lambda_{r}\right),\left(\mu_{1}, \ldots, \mu_{s}\right)\right)$, then

$$
|T|=\prod_{\lambda_{i}}\left(q^{\lambda_{i}}-1\right) \prod_{\mu_{i}}\left(q^{\mu_{i}}+1\right)
$$

Zeroes of characters

Now assume: the Sylow- ℓ-subgroup of G is not cyclic

Theorem

Let $\chi \in \operatorname{Irr}(G)$ such that $\chi(t) \neq 0$ on all ℓ-singular regular semisimple elements t. Then one of the following holds:
(a) If χ is not unipotent then $G \in\left\{S p_{4}(2), S p_{8}(2)\right\}$.
(b) χ is the trivial or Steinberg character.
(c) χ or its Alvis-Curtis dual is a unipotent character $\chi_{\mathcal{S}}$:
(1) $G=S p_{2 n}(q)$ or $G=\operatorname{Spin}_{2 n+1}(q), d$ odd, $n=2 d+r, 0 \leq r<d$ and

$$
\mathcal{S}=\left(\begin{array}{llllll}
& 1 & 2 & \ldots & d-r-1 & d
\end{array} \quad 2 d\right) .
$$

(2)-(6) Similar for other types, d odd or even.
(7)-(10) Cases for $q=2$, e.g., $G=S p_{6}(2), d=2$ and $\mathcal{S}=\binom{013}{-}$.

Classifying ℓ-modular endotrivial modules

A simple ℓ-modular endotrivial representation of G can be lifted to a characteristic 0 representation with character χ such that

- $|\chi(g)|=1$ for all ℓ-singular elements $g \in G$
- $\chi(1) \equiv \pm 1 \bmod |G|_{\ell}$
- χ is irreducible modulo ℓ

Theorem

Let G and ℓ be as before. If $\chi \in \operatorname{Irr}(G)$ is the lifted character of a non-trivial simple ℓ-modular endotrivial module then $G=S p_{8}(2)$,
$\chi=\chi_{S}$ with $\mathcal{S}=\binom{01}{4}$.

Constituents of 1-PIMs

(Answering a question of Külshammer, Koshitani, Sambale.)

Theorem

Let G, ℓ be as before. Then the ℓ-modular projective cover of the trivial character has at least three constituents.

Euzapıбтஸ́ то入ú

