Towards an Exotic Robinson-Schensted Correspondence (joint with V. Nandakumar and D. Rosso)

Neil Saunders

École Polytechnique Fédérale de Lausanne

Representation Theory in Samos 4 July 2016

Neil Saunders Towards an Exotic Robinson-Schensted Correspondence

Nilpotent Orbits in Type A

We always work over \mathbb{C} . The Nilpotent Cone for GL_n is:

 $\mathcal{N}(\mathfrak{gl}_n) := \{ x \in Mat_n \mid x \text{ is nilpotent, i.e. all eigenvalues are } 0 \},\$

where GL_n acts by conjugation: $g \cdot x := g \times g^{-1}$

Theorem (Jordan Canonical Form)

 GL_n -orbits on $\mathcal{N}(\mathfrak{gl}_n)$ are classified by partitions of n. For $\lambda \in \mathcal{P}_n, \mathcal{O}_\lambda$ consists of those $x \in \mathcal{N}(\mathfrak{gl}_n)$ whose Jordan blocks have size $(\lambda_1, \lambda_2, \ldots) = \lambda$. Say x has Jordan Type λ

The G-orbits stratify $\mathcal N$ with the following closure ordering:

Closure Orderings in Type A

We have $\mathcal{N} = \sqcup_{\lambda \in \mathcal{P}_n} \mathcal{O}_\lambda$ and

$$\mathcal{O}_{\mu} \subseteq \overline{\mathcal{O}_{\lambda}} \iff \mu \leq \lambda \iff \mu_{1} \leq \lambda_{1}$$
$$\mu_{1} + \mu_{2} \leq \lambda_{1} + \lambda_{2}$$

Nilpotent Orbits and Weyl Group Reprsentations

The symmetric group on *n*-letters, S_n is the Weyl group of GL_n . (In general $W = N_G(T)/T$, where T is a maximal torus). We have the following bijections:

$$\begin{array}{cccc} GL_n \setminus \mathcal{N}(\mathfrak{gl}_n) & \stackrel{\sim}{\longleftrightarrow} & \mathcal{P}_n & \stackrel{\sim}{\longleftrightarrow} & \text{Irreps of } S_n \\ GL_n \cdot \mathsf{x} = \mathcal{O}_\lambda & \longleftrightarrow & \lambda & \longleftrightarrow & S^\lambda \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$$

'Combinatorial' Springer correspondence in Type A

In general, we have an injection:

$$G \setminus \mathcal{N} \hookrightarrow \operatorname{Irr}(W).$$

Nilpotent Orbits in Types B and C

The groups and respective nilpotent cones are:

$$\begin{array}{lll} SO_{2n+1} & = & \{g \in \mathsf{Mat}_{2n+1} \mid \mathsf{det}(g) = 1, \, (gv, gw) = (v, w), \, \forall v, w\}, \\ \mathcal{N}(\mathfrak{so}_{2n+1}) & = & \{\mathsf{x} \in \mathsf{Mat}_{2n+1} \mid \mathsf{x} \, \mathsf{nilpotent}, \, \, (xv, v) = 0, \, \forall v\}, \end{array}$$

where (,) is a symmetric non-degenerate bilinear form on \mathbb{C}^{2n+1} .

 $\begin{array}{lll} Sp_{2n} &=& \{g \in \mathsf{Mat}_{2n} \mid \mathsf{det}(g) = 1, \, \langle gv, gw \rangle = \langle v, w \rangle, \, \forall v, w \}, \\ \mathcal{N}(\mathfrak{sp}_{2n}) &=& \{ \mathsf{x} \in \mathsf{Mat}_{2n} \mid \mathsf{x} \, \mathsf{nilpotent}, \, \langle \mathsf{x}v, w \rangle = \langle \mathsf{x}w, v \rangle, \, \forall v, w \}, \end{array}$

where \langle,\rangle is a symplectic non-degenerate bilinear form on \mathbb{C}^{2n} .

Theorem (Wall, Gerstenhaber, Hesselink)

Nilpotent orbits of SO_{2n+1} and Sp_{2n} are classified by Jordan Type:

$$\begin{aligned} & 5O_{2n+1} \setminus \mathcal{N}(\mathfrak{so}_{2n+1}) & \stackrel{\sim}{\longleftrightarrow} & \left\{ \lambda \vdash 2n+1 \Big| \begin{array}{c} \text{even parts occur with} \\ \text{even multiplicity} \end{array} \right\}, \\ & Sp_{2n} \setminus \mathcal{N}(\mathfrak{sp}_{2n}) & \stackrel{\sim}{\longleftrightarrow} & \left\{ \lambda \vdash 2n \Big| \begin{array}{c} \text{odd parts occur with} \\ \text{even multiplicity} \end{array} \right\}. \end{aligned}$$

Types B and C

 SO_{2n+1} and Sp_{2n} share the same Weyl group:

$$W(B_n) = W(C_n) := \{\pm 1\} \wr S_n.$$

Irreducible representations of $W(C_n)$ are classified by bipartitions of *n*:

$$\mathcal{Q}_n = \{\lambda := (\mu; \nu) : \mu, \nu \text{ partitions}; |\mu| + |\nu| = n\}.$$

Theorem (Lusztig, Shoji)

The nilpotent orbits in Types B and C correspond to the following irreducible representations:

$$SO_{2n+1} \setminus \mathcal{N}(\mathfrak{so}_{2n+1}) \iff \{(\mu;\nu) \mid \mu_i \ge \nu_i - 2, \nu_i \ge \mu_{i+1}\}, \\ Sp_{2n} \setminus \mathcal{N}(\mathfrak{sp}_{2n}) \iff \{(\mu;\nu) \mid \mu_i \ge \nu_i - 1, \nu_i \ge \mu_{i+1}\}.$$

Closure Orderings in Types B and C

For $(
ho,\sigma)$ and $(\mu,
u)\in\mathcal{Q}_{\textit{n}}$, we have:

$$\mathcal{O}_{(\rho,\sigma)} \subseteq \overline{\mathcal{O}_{(\mu,\nu)}} \iff \rho_1 \leq \mu_1$$

$$\rho_1 + \sigma_1 \leq \mu_1 + \nu_1$$

$$\rho_1 + \sigma_1 + \rho_2 \leq \mu_1 + \nu_1 + \mu_2$$

$$\rho_1 + \sigma_1 + \rho_2 + \sigma_2 \leq \mu_1 + \nu_1 + \mu_2 + \nu_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

An Explicit W-action

There is a *W*-action on the Springer Sheaf:

$$\underline{\mathsf{Spr}} = \pi_* \underline{\mathbb{C}}_{\widetilde{\mathcal{N}}}[\mathsf{dim}\,\mathcal{N}] \in \mathsf{Perv}_{\mathcal{G}}(\mathcal{N},\mathbb{C}) \subset D^b_c(\mathcal{N})$$

where $\pi: \widetilde{\mathcal{N}} \longrightarrow \mathcal{N}$ is the Springer resolution. By the decomposition theorem:

$$\pi_* \underline{\mathbb{C}}_{\widetilde{\mathcal{N}}}[\dim \mathcal{N}] = \bigoplus_{\substack{\mathcal{O} \in \mathcal{N}/\mathcal{G} \\ \mathcal{E} \in \mathsf{Loc}_{\mathbb{C}}(\mathcal{O})}} IC(\mathcal{O}, \mathcal{E}) \otimes \mathsf{Hom}_{\mathsf{Perv}_{\mathcal{G}}(\mathcal{N}, \mathbb{C})}(\underline{\mathsf{Spr}}, IC(\mathcal{O}, \mathcal{E}))$$

Springer Miracles!

Hom<sub>Perv_G(
$$\mathcal{N},\mathbb{C}$$
)</sub>(Spr, $IC(\overline{\mathcal{O}},\mathcal{E})$) $\cong H^{top}(\pi^{-1}(x))$, for $x \in \mathcal{O}$.
H^{top}($\pi^{-1}(x)$) carries a W-action.

Taking endomorphisms:

$$\operatorname{End}(\pi_*\underline{\mathbb{C}}_{\widetilde{\mathcal{N}}}[\dim \mathcal{N}]) = \bigoplus_{\mathcal{O} \in \mathcal{N}/\mathcal{G}, \ \mathcal{E} \in \operatorname{Loc}_{\mathbb{C}}(\mathcal{O})} \operatorname{End}(H^{top}(\pi^{-1}(x))) \cong \mathbb{C}W.$$

- The local systems *E* ∈ Loc(*O*) correspond to representations of the component group *A*(*O*) = *C*_G(x)/*C*_G(x)⁰, for x ∈ *O*.
- In Type A, GL_n all centralisers are connected, so no non-trivial local systems appear in the decomposition.
- In Type C, some non-trivial local systems occur.
- In 2009, Kato define an Exotic Nilpotent Cone for which Sp_{2n} acts with connected stablisers.

Kato's Exotic Nilpotent Cone

Let S be the Sp_{2n} -invariant complement of \mathfrak{sp}_{2n} in \mathfrak{gl}_{2n} ; i.e.

$$\mathcal{S} = \{ \mathsf{x} \in \mathsf{Mat}_{2n}(\mathbb{C}) \, | \, \langle \mathsf{x} \mathsf{v}, \mathsf{w} \rangle = \langle \mathsf{v}, \mathsf{x} \mathsf{w} \rangle, \, \forall \mathsf{v}, \mathsf{w} \in \mathbb{C}^{2n} \}.$$

Define $\mathcal{N}(\mathcal{S}) := \mathcal{S} \cap \mathcal{N}(\mathfrak{gl}_{2n}).$

Definition (Kato, 2009)

The Exotic Nilpotent Cone of Type C is

$$\mathfrak{N} = \mathbb{C}^{2n} imes \mathcal{N}(\mathcal{S}) = \{(v, x) \mid v \in \mathbb{C}^{2n}, x \in \mathcal{N}(\mathcal{S})\}$$

The exotic nilpotent cone recovers the 'Springer Miracles':

Theorem (Kato, 2009)

• End
$$(\psi_* \underline{\mathbb{C}}_{\widetilde{\mathfrak{N}}}) \cong \mathbb{C}W(C_n);$$

•
$$Sp_{2n} \setminus \mathfrak{N} \longleftrightarrow \operatorname{Irr}(W(C_n)) \longleftrightarrow \mathcal{Q}_n.$$

Sp_{2n} -orbits on the exotic nilpotent cone

Let $\mathbb{O}_{(\mu,\nu)}$ be the *Sp*_{2n}-orbit corresponding to $(\mu,\nu) \in \mathcal{Q}_n$.

Theorem (Achar-Henderson, 2009)		
For (ho,σ) and $(\mu, u)\in\mathcal{Q}_n$, we have:		
$\mathbb{O}_{(ho,\sigma)}\subseteq\mathbb{O}_{(\mu, u)}\iff$	$ ho_1$	$\leq \mu_1$
	$\rho_1 + \sigma_1$	$\leq \mu_1 + \nu_1$
	$\rho_1 + \sigma_1 + \rho_2$	$\leq \mu_1 + \nu_1 + \mu_2$
	$\rho_1 + \sigma_1 + \rho_2 + \sigma_2$	$\leq \mu_1 + \nu_1 + \mu_2 + \nu_2$
	:	: :

This was prove using their work on the enhanced nilpotent cone for GL_{2n} ; $\mathbb{C}^{2n} \times \mathcal{N}(\mathfrak{gl}_{2n})$

Why does the Exotic Nilpotent Cone Exist?

- An accident of the root system of type C;
- In characteristic 2, the adjoint representation of $Sp_{2n}(\overline{\mathbb{F}}_2)$ is reducible with two constituents;
- the weights of these constituents are "short roots" for one and the "long roots" for the other;
- the short root constituent is $\Lambda^2(\mathbb{F}_2^{2n})$;
- the "long root" constituent is a Frobenius twist of the natural module whose \mathbb{F}_2^{2n} weights are half the long roots.

In characteristic 0, the exotic nilpotent cone is the Hilbert nullcone of the representation $\mathbb{C}^{2n} \oplus \Lambda^2(\mathbb{C}^{2n}) := \mathbb{V}$.

Springer Fibres

Let $B \subseteq G$ be a Borel subgroup. Let \mathfrak{n} be the nil-radical of $\mathfrak{b} := \text{Lie}(B)$. In general the Springer resolution has the form:

$$\pi: G \times_B \mathfrak{n} \longrightarrow \mathcal{N}; (g, \mathsf{x}) \mapsto g \mathsf{x} g^{-1}$$

where $G \times_B \mathfrak{n} = (G \times \mathfrak{n})/\{(g, x) \sim (gb^{-1}, bxb^{-1}), \forall b \in B\}$. We have $G \times_B$ is smooth and π is proper, and general fibres $\mathcal{F}_x := \pi^{-1}(x)$ have the form: (in general) {Borel subalgebras: $\mathfrak{b}' \subset \mathfrak{g} | x \in \mathfrak{b}'\} \subseteq G/B := \mathcal{B}$

(Type A) { $0 \subset V_1 \subset \ldots \subset V_n = \mathbb{C}^n | \dim(V_i) = i, x(V_i) \subset V_{i-1}$ } (Type C) { $0 \subset V_1 \subset \ldots \subset V_{2n} = \mathbb{C}^{2n} | V_{2n-i}^{\perp} = V_i, x(V_i) \subset V_{i-1}$ } In the exotic case, the resolution looks like:

$$\psi: G \times_B \mathbb{V}^{\geq 0} \longrightarrow \mathfrak{N}$$

with fibres above a point (v, x):

$$\mathcal{C}_{(\mathbf{v},\mathsf{x})} := \{ \mathbf{0} \subset V_1 \subset \ldots \subset \mathbb{C}^{2n} \mid V_{2n-i}^{\perp} = V_i, \ \mathbf{v} \in V_n, \ \mathsf{x}(V_i) \subset V_{i-1} \}.$$

Springer Fibres and Combinatorics in Type A

Let $V = \mathbb{C}^n$, fix $\lambda = (\lambda_1, \lambda_2, ...) \in \mathcal{P}_n$ and $x \in \mathcal{N}$ of type λ . Let \mathcal{F}_x be the fibre of x. Recall that for S^{λ} a Specht module for S_n , the set

 $\mathsf{Std}(\lambda) := \{ \mathsf{standard \ tableau \ of \ shape \ } \lambda \},\$

labels a basis for S^{λ} .

Theorem (Spalenstein, 1976)

There is a map (defined inductively)

$$\Theta: \mathcal{F}_{\mathsf{x}} \longrightarrow \mathsf{Std}(\lambda),$$

which induces a bijection:

$$\operatorname{Irr}(\mathcal{F}_{\mathsf{x}}) \stackrel{\sim}{\longleftrightarrow} \operatorname{Std}(\lambda).$$

Springer Fibres and Standard Young Tableaux

For $T \in \text{Std}(\lambda)$, let $\mathcal{F}_T := \Theta^{-1}(T)$ (induction shows that the \mathcal{F}_T are non-empty for all $T \in \text{Std}(\lambda)$). Therefore

$$\mathcal{F}_{\mathsf{x}} = \bigsqcup_{\mathcal{T} \in \mathsf{Std}(\lambda)} \mathcal{F}_{\mathcal{T}}.$$

Theorem (Spaltenstein, 1976)

The \mathcal{F}_T are:

- (a) locally closed in \mathcal{F}_x ;
- (b) are irreducible and all of the same dimension

$$\dim(\mathcal{F}_{\mathcal{T}}) = \sum_{i \ge 1} \frac{\lambda_i^{tr}(\lambda_i^{tr} - 1)}{2}.$$

The Steinberg Variety: Type A

Let $G = GL_n$, $\mathcal{N} = \mathcal{N}(\mathfrak{gl}_n)$ and $\mathcal{B} = G/B$ for B a Borel. Define the Steinberg variety as

$$\mathcal{Z} = \{(\mathsf{x}, F_{\bullet}, G_{\bullet}) \, | \, \mathsf{x} \in \mathcal{N}, F_{\bullet}, G_{\bullet} \in \mathcal{F}_{\mathsf{x}} \} \subseteq \mathcal{N} \times \mathcal{B} \times \mathcal{B}.$$

It comes with two natural projections:

$$\mathcal{N} \xleftarrow{p_1} \mathcal{Z} \xrightarrow{p_2} \mathcal{B} \times \mathcal{B},$$

which gives two ways to parametrise its irreducible components:

- by irreducible components of *F*_x (i.e. by Std(λ)) × Std(λ)): Suppose *S*, *T* ∈ Std(λ). Then a generic point (x, *F*_•, *G*_•) ∈ *Z*_(*S*,*T*) ⊆ *Z* has the property that Θ(*F*_•) = *S* and Θ(*G*_•) = *T*.
- by elements of S_n (or GL_n-orbits on B × B): Let σ ∈ S_n. Then a generic point (x', F'_•, G'_•) ∈ Z_σ has the property that F'_• = σ(G'_•).

The Steinberg Variety: Type A

These two ways of parametrising irreducible components of $\ensuremath{\mathcal{Z}}$ give rise to a bijection

$$S_n \stackrel{\sim}{\longleftrightarrow} \mathsf{Std}(\lambda) \times \mathsf{Std}(\lambda)$$

Theorem (Steinberg, 1988)

This bijection is an occurrence of the Robinson-Schensted Correspondence for the symmetric group.

Our Question

How much of this carries through for the exotic nilpotent cone?

- What are the irreducible components of the exotic Springer fibres?
- Parametrise irreducible components of the 'exotic' Steinberg variety.

Exotic Springer Fibres

Let (v, x) be a representative for the orbit $\mathbb{O}_{(\mu,\nu)} \subseteq \mathfrak{N}$; we say that (v, x) has Exotic type $\lambda := (\mu, \nu)$; write $eType(v, x) = (\mu, \nu)$. Let $\mathcal{C}_{(v,x)}$ denote the fibre $\psi^{-1}(v, x)$. Here we want a bijection

$$\operatorname{Irr}(\mathcal{C}_{(\nu,\mathsf{x})}) \longleftrightarrow \operatorname{Std}(\mu,\nu).$$

There is a natural map:

$$\begin{array}{rcl} \Phi: \mathcal{C}_{(v, \mathsf{x})} & \longrightarrow & \mathcal{Q}_1 \times \mathcal{Q}_2 \times \ldots \times \mathcal{Q}_{n-1} \times \mathcal{Q}_n \\ F_{\bullet} & \mapsto & (\dots, \mathsf{eType}(v + V_{n-i}, \mathsf{x}_{|V_{n-i}^{\perp}/V_{n-i}})_{i=1}^{n-1}, \dots, (\mu, \nu)), \end{array}$$

where

- $(v + V_i, x_{|V_{n-i}^{\perp}/V_{n-i}})$ is representative of the $Sp_{2(n-i)}$ -orbit in \mathfrak{N}_{n-i} ; and
- $eType(v + V_{n-i}, \mathsf{x}_{|V_{n-i}^{\perp}/V_{n-i}}) \in \mathcal{Q}_i.$

$$im(\Phi) = ??$$

Exotic Springer Fibres

Consider the set of nested sequences

$$\mathbb{T}_{(\mu,\nu)} := \left\{ (\mu_1,\nu_1) \preceq \ldots \preceq (\mu_n,\nu_n) = (\mu,\nu) \left| \begin{array}{c} (\mu_i,\nu_i) \in \mathcal{Q}_i \\ \mu_{i-1} = \mu_i, \nu_{i-1} < \nu_i \text{ or vice versa} \end{array} \right\} \right\}$$

For

$$\Phi: \mathcal{C}_{(\mathbf{v},\mathsf{x})} \longrightarrow \mathcal{Q}_1 \times \mathcal{Q}_2 \times \ldots \times \mathcal{Q}_{n-1} \times \mathcal{Q}_n,$$

 $im(\Phi)$ is not just the set of nested sequences, but....

Theorem (Nandakumar-Rosso-S'15)

Let $T_{(\mu,\nu)} \in \mathbb{T}_{(\mu,\nu)}$. The preimage $\Phi^{-1}(T_{(\mu,\nu)})$ is an irreducible sub-variety of $C_{(\nu,\times)}$ of dimension

$$b(\mu, \nu) := |\nu| + 2 \sum_{i \ge 1} (i-1)(\mu_i + \nu_i).$$

Not all points in the exotic Springer fibre $\mathbb{C}_{(\mu,\nu)}$ map to nested sequences of bipartitions, but we have:

Lemma (Nadakumar-Rosso-S'15)

Let $F_{\bullet} \in C_{(v,x)}$ such that $\Phi(F_{\bullet}) \notin \mathbb{T}_{(\mu,\nu)}$. Then $F_{\bullet} \in \overline{\Phi^{-1}(T_{(\mu,\nu)})}$ for some $T_{(\mu,\nu)} \in \mathbb{T}_{(\mu,\nu)}$

Corollary

Taking closures of preimages of nested sequences, we have

$$\mathcal{C}_{(\mathbf{v},\mathsf{x})} = igcup_{\mathcal{T}_{(\mu,
u)}\in \mathbb{T}_{(\mu,
u)}} \overline{\Phi^{-1}(\mathcal{T}_{(\mu,
u)})}.$$

Exotic Springer Fibres and Combinatorics

Theorem (Nadakumar-Rosso-S'15)

For $T_{(\mu,\nu)} \in \mathbb{T}_{(\mu,\nu)}$, the $\Phi^{-1}(T_{(\mu,\nu)})$ are locally closed, irreducible sub-varieties of $C_{(\mu,\nu)}$ of equal dimension, and so

$$\operatorname{Irr}(\mathcal{C}_{(\mu,\nu)}) \stackrel{\sim}{\longleftrightarrow} \operatorname{Std}(\mu,\nu).$$

Work in Progress

An exotic Robinson-Schensted-Correspondence for $W(C_n)$.

- If λ = (-; ν), then the algorithm is a 'transpose' of the RS-algorithm in type A.
- If $\lambda = (\mu; -)$, then algorithm is easy to describe.
- If $\lambda = (\mu; \nu)$, then it gets complicated!