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Nilpotent Orbits in Type A

We always work over C. The Nilpotent Cone for GLn is:

N (gln) := {x ∈ Matn | x is nilpotent, i.e. all eigenvalues are 0},
where GLn acts by conjugation: g · x := gxg−1

Theorem (Jordan Canonical Form)

GLn-orbits on N (gln) are classified by partitions of n. For
λ ∈ Pn,Oλ consists of those x ∈ N (gln) whose Jordan blocks have
size (λ1, λ2, . . .) = λ. Say x has Jordan Type λ

The G -orbits stratify N with the following closure ordering:

Closure Orderings in Type A

We have N = tλ∈PnOλ and

Oµ ⊆ Oλ ⇐⇒ µ� λ ⇐⇒ µ1 ≤ λ1

µ1 + µ2 ≤ λ1 + λ2

...
...

...
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Nilpotent Orbits and Weyl Group Reprsentations

The symmetric group on n-letters, Sn is the Weyl group of GLn.
(In general W = NG (T )/T , where T is a maximal torus).
We have the following bijections:

GLn \ N (gln)
∼←→ Pn

∼←→ Irreps of Sn
GLn · x = Oλ ←→ λ ←→ Sλ

(Specht Module)

’Combinatorial’ Springer correspondence in Type A

In general, we have an injection:

G \ N ↪→ Irr(W ).
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Nilpotent Orbits in Types B and C

The groups and respective nilpotent cones are:

SO2n+1 = {g ∈ Mat2n+1 | det(g) = 1, (gv , gw) = (v ,w), ∀v ,w},
N (so2n+1) = {x ∈ Mat2n+1 | x nilpotent, (xv , v) = 0, ∀v},

where (, ) is a symmetric non-degenerate bilinear form on C2n+1.

Sp2n = {g ∈ Mat2n | det(g) = 1, 〈gv , gw〉 = 〈v ,w〉, ∀v ,w},
N (sp2n) = {x ∈ Mat2n | x nilpotent, 〈xv ,w〉 = 〈xw , v〉, ∀v ,w},

where 〈, 〉 is a symplectic non-degenerate bilinear form on C2n.

Theorem (Wall, Gerstenhaber, Hesselink)

Nilpotent orbits of SO2n+1 and Sp2n are classified by Jordan Type:

SO2n+1 \ N (so2n+1)
∼←→

{
λ ` 2n + 1 even parts occur with

even multiplicity

}
,

Sp2n \ N (sp2n)
∼←→

{
λ ` 2n odd parts occur with

even multiplicity

}
.

Neil Saunders Towards an Exotic Robinson-Schensted Correspondence



Types B and C

SO2n+1 and Sp2n share the same Weyl group:

W (Bn) = W (Cn) := {±1} o Sn.

Irreducible representations of W (Cn) are classified by bipartitions
of n:

Qn = {λ := (µ; ν) : µ, ν partitions; |µ|+ |ν| = n}.

Theorem (Lusztig, Shoji)

The nilpotent orbits in Types B and C correspond to the following
irreducible representations:

SO2n+1 \ N (so2n+1) ←→ {(µ; ν) |µi ≥ νi − 2, νi ≥ µi+1} ,
Sp2n \ N (sp2n) ←→ {(µ; ν) |µi ≥ νi − 1, νi ≥ µi+1} .
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Types B and C

Closure Orderings in Types B and C

For (ρ, σ) and (µ, ν) ∈ Qn, we have:

O(ρ,σ) ⊆ O(µ,ν) ⇐⇒ ρ1 ≤ µ1

ρ1 + σ1 ≤ µ1 + ν1

ρ1 + σ1 + ρ2 ≤ µ1 + ν1 + µ2

ρ1 + σ1 + ρ2 + σ2 ≤ µ1 + ν1 + µ2 + ν2

...
...

...
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An Explicit W -action

There is a W -action on the Springer Sheaf:

Spr = π∗CÑ [dimN ] ∈ PervG (N ,C) ⊂ Db
c (N )

where π : Ñ −→ N is the Springer resolution. By the
decomposition theorem:

π∗CÑ [dimN ] =
⊕
O∈N/G
E∈LocC(O)

IC (O, E)⊗HomPervG (N ,C)(Spr, IC (O, E))

Springer Miracles!

1 HomPervG (N ,C)(Spr, IC (O, E)) ∼= Htop(π−1(x)), for x ∈ O.

2 Htop(π−1(x)) carries a W -action.

Taking endomorphisms:

End(π∗CÑ [dimN ]) =
⊕

O∈N/G , E∈LocC(O)

End(Htop(π−1(x))) ∼= CW .
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A Word on Local Systems

The local systems E ∈ Loc(O) correspond to representations
of the component group A(O) = CG (x)/CG (x)0, for x ∈ O.

In Type A, GLn all centralisers are connected, so no non-trivial
local systems appear in the decomposition.

In Type C , some non-trivial local systems occur.

In 2009, Kato define an Exotic Nilpotent Cone for which Sp2n

acts with connected stablisers.
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Kato’s Exotic Nilpotent Cone

Let S be the Sp2n-invariant complement of sp2n in gl2n; i.e.

S = {x ∈ Mat2n(C) | 〈xv ,w〉 = 〈v , xw〉, ∀v ,w ∈ C2n}.

Define N (S) := S ∩ N (gl2n).

Definition (Kato, 2009)

The Exotic Nilpotent Cone of Type C is

N = C2n ×N (S) = {(v , x) | v ∈ C2n, x ∈ N (S)}.

The exotic nilpotent cone recovers the ’Springer Miracles’:

Theorem (Kato, 2009)

End(ψ∗CÑ
) ∼= CW (Cn);

Sp2n \N←→ Irr(W (Cn))←→ Qn.
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Sp2n-orbits on the exotic nilpotent cone

Let O(µ,ν) be the Sp2n-orbit corresponding to (µ, ν) ∈ Qn.

Theorem (Achar-Henderson, 2009)

For (ρ, σ) and (µ, ν) ∈ Qn, we have:

O(ρ,σ) ⊆ O(µ,ν) ⇐⇒ ρ1 ≤ µ1

ρ1 + σ1 ≤ µ1 + ν1

ρ1 + σ1 + ρ2 ≤ µ1 + ν1 + µ2

ρ1 + σ1 + ρ2 + σ2 ≤ µ1 + ν1 + µ2 + ν2

...
...

...

This was prove using their work on the enhanced nilpotent cone for
GL2n; C2n ×N (gl2n)
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Why does the Exotic Nilpotent Cone Exist?

An accident of the root system of type C;

In characteristic 2, the adjoint representation of Sp2n(F2) is
reducible with two constituents;

the weights of these constituents are ”short roots” for one
and the ”long roots” for the other;

the short root constituent is Λ2(F2n
2 );

the ”long root” constituent is a Frobenius twist of the natural
module whose F2n

2 weights are half the long roots.

In characteristic 0, the exotic nilpotent cone is the Hilbert nullcone
of the representation C2n ⊕ Λ2(C2n) := V.
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Springer Fibres

Let B ⊆ G be a Borel subgroup. Let n be the nil-radical of
b := Lie(B). In general the Springer resolution has the form:

π : G ×B n −→ N ; (g , x) 7→ gxg−1

where G ×B n = (G × n)/{(g , x) ∼ (gb−1, bxb−1), ∀b ∈ B}. We
have G×B is smooth and π is proper, and general fibres
Fx := π−1(x) have the form:

(in general) {Borel subalgebras: b′ ⊂ g | x ∈ b′} ⊆ G/B := B
(Type A) {0 ⊂ V1 ⊂ . . . ⊂ Vn = Cn | dim(Vi ) = i , x(Vi ) ⊂ Vi−1}
(Type C) {0 ⊂ V1 ⊂ . . . ⊂ V2n = C2n |V⊥2n−i = Vi , x(Vi ) ⊂ Vi−1}

In the exotic case, the resolution looks like:

ψ : G ×B V≥0 −→ N

with fibres above a point (v , x):

C(v ,x) := {0 ⊂ V1 ⊂ . . . ⊂ C2n |V⊥2n−i = Vi , v ∈ Vn, x(Vi ) ⊂ Vi−1}.
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Springer Fibres and Combinatorics in Type A

Let V = Cn, fix λ = (λ1, λ2, . . .) ∈ Pn and x ∈ N of type λ. Let
Fx be the fibre of x. Recall that for Sλ a Specht module for Sn,
the set

Std(λ) := {standard tableau of shape λ},

labels a basis for Sλ.

Theorem (Spalenstein, 1976)

There is a map (defined inductively)

Θ : Fx −→ Std(λ),

which induces a bijection:

Irr(Fx)
∼←→ Std(λ).
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Springer Fibres and Standard Young Tableaux

For T ∈ Std(λ), let FT := Θ−1(T )
(induction shows that the FT are non-empty for all T ∈ Std(λ)).
Therefore

Fx =
⊔

T∈Std(λ)

FT .

Theorem (Spaltenstein, 1976)

The FT are:

(a) locally closed in Fx;

(b) are irreducible and all of the same dimension

dim(FT ) =
∑
i≥1

λtri (λtri − 1)

2
.
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The Steinberg Variety: Type A

Let G = GLn, N = N (gln) and B = G/B for B a Borel.
Define the Steinberg variety as

Z = {(x,F•,G•) | x ∈ N ,F•,G• ∈ Fx } ⊆ N × B × B.

It comes with two natural projections:

N p1←− Z p2−→ B × B,

which gives two ways to parametrise its irreducible components:

by irreducible components of Fx (i.e. by Std(λ))× Std(λ)):
Suppose S ,T ∈ Std(λ). Then a generic point
(x,F•,G•) ∈ Z(S ,T ) ⊆ Z has the property that Θ(F•) = S
and Θ(G•) = T .

by elements of Sn (or GLn-orbits on B × B): Let σ ∈ Sn.
Then a generic point (x′,F ′•,G

′
•) ∈ Zσ has the property that

F ′• = σ(G ′•).
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The Steinberg Variety: Type A

These two ways of parametrising irreducible components of Z give
rise to a bijection

Sn
∼←→ Std(λ)× Std(λ)

Theorem (Steinberg, 1988)

This bijection is an occurrence of the Robinson-Schensted
Correspondence for the symmetric group.

Our Question

How much of this carries through for the exotic nilpotent cone?

What are the irreducible components of the exotic Springer
fibres?

Parametrise irreducible components of the ’exotic’ Steinberg
variety.
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Exotic Springer Fibres

Let (v , x) be a representative for the orbit O(µ,ν) ⊆ N; we say that
(v , x) has Exotic type λ := (µ, ν); write eType(v , x) = (µ, ν).
Let C(v ,x) denote the fibre ψ−1(v , x). Here we want a bijection

Irr(C(v ,x))←→ Std(µ, ν).

There is a natural map:

Φ : C(v ,x) −→ Q1 ×Q2 × . . .×Qn−1 ×Qn

F• 7→ (. . . , eType(v + Vn−i , x|V⊥n−i/Vn−i
)n−1
i=1 , . . . , (µ, ν)),

where

(v + Vi , x|V⊥n−i/Vn−i
) is representative of the Sp2(n−i)-orbit in

Nn−i ; and

eType(v + Vn−i , x|V⊥n−i/Vn−i
) ∈ Qi .

im(Φ) =??
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Exotic Springer Fibres

Consider the set of nested sequences

T(µ,ν) :=
{

(µ1, ν1) � . . . � (µn, νn) = (µ, ν) (µi ,νi )∈Qi
µi−1=µi , νi−1<νi or vice versa

}
.

For
Φ : C(v ,x) −→ Q1 ×Q2 × . . .×Qn−1 ×Qn,

im(Φ) is not just the set of nested sequences, but....

Theorem (Nandakumar-Rosso-S’15)

Let T(µ,ν) ∈ T(µ,ν). The preimage Φ−1(T(µ,ν)) is an irreducible
sub-variety of C(v ,x) of dimension

b(µ, ν) := |ν|+ 2
∑
i≥1

(i − 1)(µi + νi ).
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Exotic Springer Fibres

Not all points in the exotic Springer fibre C(µ,ν) map to nested
sequences of bipartitions, but we have:

Lemma (Nadakumar-Rosso-S’15)

Let F• ∈ C(v ,x) such that Φ(F•) 6∈ T(µ,ν). Then F• ∈ Φ−1(T(µ,ν))
for some T(µ,ν) ∈ T(µ,ν)

Corollary

Taking closures of preimages of nested sequences, we have

C(v ,x) =
⋃

T(µ,ν)∈T(µ,ν)

Φ−1(T(µ,ν)).
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Exotic Springer Fibres and Combinatorics

Theorem (Nadakumar-Rosso-S’15)

For T(µ,ν) ∈ T(µ,ν), the Φ−1(T(µ,ν)) are locally closed, irreducible
sub-varieties of C(µ,ν) of equal dimension, and so

Irr(C(µ,ν))
∼←→ Std(µ, ν).

Work in Progress

An exotic Robinson-Schensted-Correspondence for W (Cn).

If λ = (−; ν), then the algorithm is a ’transpose’ of the
RS-algorithm in type A.

If λ = (µ;−), then algorithm is easy to describe.

If λ = (µ; ν), then it gets complicated!
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