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Abstract. We prove that the Framisation of the Temperley–Lieb algebra is isomorphic to a direct sum

of matrix algebras over tensor products of classical Temperley–Lieb algebras. We use this result to obtain
a closed combinatorial formula for the invariants for classical links obtained from a Markov trace on the

Framisation of the Temperley–Lieb algebra. For a given link L, this formula involves the Jones polynomials

of all sublinks of L, as well as linking numbers.

1. Introduction

The Temperley–Lieb algebra was introduced by Temperley and Lieb [TeLi] for its applications in statistical
mechanics. Jones later showed that the Temperley–Lieb algebra can be seen as a quotient of the Iwahori–
Hecke algebra of type A [Jo1, Jo2]. He defined a Markov trace on it, now known as the Jones–Ocneanu
trace, and used it to construct his famous polynomial link invariant, the Jones polynomial. This trace is
also obtained as a specialisation of a trace defined directly on the Iwahori–Hecke algebra of type A, which
in turn yields another famous polynomial link invariant, the HOMFLYPT polynomial (also known as the
2-variable Jones polynomial) [HOMFLY, PT].

Yokonuma–Hecke algebras were introduced by Yokonuma [Yo] as generalisations of Iwahori–Hecke al-
gebras. In particular, the Yokonuma–Hecke algebra of type A is the centraliser algebra associated to the
permutation representation with respect to a maximal unipotent subgroup of the general linear group over a
finite field. In later years, Juyumaya transformed its presentation to “almost” the one we use in this paper
and defined a Markov trace on it [Ju1, JuKa, Ju2]. Following Jones’s method, Juyumaya and Lambropoulou
used this trace to construct invariants for framed [JuLa1, JuLa2], classical [JuLa3] and singular [JuLa4] links.
The exact presentation for the Yokonuma–Hecke algebra used in this paper is due to the author and Poulain
d’Andecy, who modified Juyumaya’s generators in [ChPdA]. Although the construction of the Markov trace
with the new generators remains similar, the invariants for framed and classical links obtained from it are not
topologically equivalent to the Juyumaya–Lambropoulou ones. This was shown in [CJKL], where the new
invariants were constructed and studied. From then on, these are the “standard” link invariants obtained
from the Yokonuma–Hecke algebra of type A. As was shown in [CJKL], they are not topologically equiva-
lent to the HOMFLYPT polynomial and they can be generalised to a 3-variable skein link invariant which is
stronger than the HOMFLYPT. In the Appendix of [CJKL], Lickorish gave a closed combinatorial formula
for the value of these invariants on a link L which involves the HOMFLYPT polynomials of all sublinks of
L and linking numbers. The same formula was obtained independently by Poulain d’Andecy and Wagner
[PdAWa] with a method that we will discuss at the end of the introduction.

However, even prior to these recent results, there has been algebraic and topological interest in finding
the analogue of the Temperley–Lieb algebra in the Yokonuma–Hecke algebra context. On the one hand, it
would be a quotient of the Yokonuma–Hecke algebra of type A such that the Markov trace on it would yield
a link invariant more general (and now known to be stronger) than the Jones polynomial. On the other
hand, it would be an example of the “framisation technique” proposed in [JuLa5], according to which known
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algebras producing invariants for classical links can be enhanced with extra generators to produce invariants
for framed links; the foremost example is the Yokonuma–Hecke algebra of type A which can be seen as the
“framisation” of the Iwahori–Hecke algebra of type A.

Goundaroulis, Juyumaya, Kontogeorgis and Lambropoulou defined and studied three quotients of the
Yokonuma–Hecke algebra of type A as potential candidates [GJKL1, GJKL2]. The one with the biggest
topological interest was named “Framisation of the Temperley–Lieb algebra” and it is the one that produces
the suitable generalisation of the Jones polynomial. The claim that this algebra is the natural analogue of
the Temperley–Lieb algebra in this context is backed up algebraically by our findings in [ChPo2, ChPo3],
where we studied the representation theory of this algebra and we proved the isomorphism theorem that we
present in the current article (we also studied similarly the other two candidates in [ChPo1, ChPo3]). This
isomorphism theorem states that the Framisation of the Temperley–Lieb algebra is isomorphic to a direct sum
of matrix algebras over tensor products of Temperley–Lieb algebras. This result makes the Framisation of the
Temperley–Lieb algebra the ideal analogue of the Temperley–Lieb algebra in view of Lusztig’s isomorphism
theorem [Lu], later reproved by Jacon and Poulain d’Andecy [JaPdA], Espinoza and Ryom–Hansen [EsRy]
and Rostam [Ro], that states that the Yokonuma–Hecke algebra of type A is isomorphic to a direct sum
of matrix algebras over tensor products of Iwahori–Hecke algebras of type A. To prove our result we use
the exposition by Jacon and Poulain d’Andecy, where the presentation of the Yokonuma–Hecke algebra of
[ChPdA] is used. In fact, in the current article we do not use the modified presentation that we used in
[ChPo2, ChPo3], but we reprove the results with the presentation of [ChPdA] in order to be with agreement
with the most recent topologically oriented papers on the subject (for example, [CJKL], [GoLa], [PdA], etc.).
Finally, our isomorphism theorem allows us to determine a basis for the Framisation of the Temperley–Lieb
algebra.

In the second part of the paper, we discuss the Markov traces on the Temperley–Lieb algebra and its
Framisation, and explain how we can use them to define invariants for classical links from the former and
for framed and classical links from the latter. We give several definitions of the traces. First, for the
Jones–Ocneanu trace, we give the original definition of [Jo2] of a trace that needs to be normalised and
re-scaled to produce a link invariant, and another one which is already invariant under positive and negative
stabilisation. As far as the Juyumaya trace is concerned, the original definition of [Ju2] is also of a trace that
needs to be normalised and re-scaled to produce a link invariant (under certain conditions discussed in detail
in §4.3), and its stabilised version appears as a particular case of the Markov traces defined and classified by
Jacon and Poulain d’Andecy in [JaPdA]. Using these stabilised traces and the isomorphism theorem for the
Yokonuma–Hecke algebra, Poulain d’Andecy and Wagner in [PdAWa] obtained closed formulas that connect
the values of these traces on a link L with the values of the HOMFLYPT polynomials of all sublinks of L, as
well as their linking numbers. For a certain choice of parameters (see [PdA, Remarks 5.4] for details), they
obtain Lickorish’s formula. Here, we consider stabilised Markov traces on the Framisation of the Temperley–
Lieb algebra, and thanks to our isomorphism theorem, we obtain an analogue of this formula for the link
invariants obtained in this case; for a given link L, this formula involves the Jones polynomials of all sublinks
of L and linking numbers. This formula has been obtained independently in [GoLa] as a specialisation of
Lickorish’s formula.

2. The Temperley–Lieb algebra and its Framisation

In this section, we give the definition of the Temperley–Lieb algebra as a quotient of the Iwahori–Hecke
algebra of type A given by Jones [Jo2], as well as the definition of the Framisation of the Temperley–
Lieb algebra as a quotient of the Yokonuma–Hecke algebra of type A given by Goundaroulis–Juyumaya–
Kontogeorgis–Lambropoulou [GJKL2]. From now on, let n ∈ N, d ∈ N∗, and let q be an indeterminate. Set
R := C[q, q−1].

2.1. The Iwahori–Hecke algebra Hn(q). The Iwahori–Hecke algebra of type A, denoted by Hn(q), is an
R-associative algebra generated by the elements

G1, . . . , Gn−1
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subject to the following braid relations:

(2.1)
GiGj = GjGi for all i, j = 1, . . . , n− 1 with |i− j| > 1,

GiGi+1Gi = Gi+1GiGi+1 for all i = 1, . . . , n− 2,

together with the quadratic relations:

(2.2) G2
i = 1 + (q − q−1)Gi for all i = 1, . . . , n− 1.

Remark 2.1. If we specialise q to 1, the defining relations (2.1)–(2.2) become the defining relations for the
symmetric group Sn. Thus, the algebra Hn(q) is a deformation of C[Sn], the group algebra of Sn over C.

Remark 2.2. The relations (2.1) are defining relations for the classical braid group Bn on n strands.
Thus, the algebra Hn(q) arises naturally as a quotient of the braid group algebra R[Bn] over the quadratic
relations (2.2).

Let w ∈ Sn and let w = si1si2 . . . sir be a reduced expression for w, where si denotes the transposition
(i, i+1). We define `(w) := r to be the length of w. By Matsumoto’s lemma, the elementGw := Gi1Gi2 . . . Gir
is well defined. It is well-known that the set BHn(q) := {Gw}w∈Sn forms a basis of Hn(q) over R, which is
called the standard basis. One presentation of the standard basis is the following:

BHn(q) =

{
(Gi1Gi1−1 . . . Gi1−k1) . . . (GipGip−1 . . . Gip−kp)

∣∣∣∣ 1 ≤ i1 < · · · < ip ≤ n− 1
ij − kj ≥ 1 ∀ j = 1, . . . , p

}
In particular, Hn(q) is a free R-module of rank n!.

2.2. The Temperley–Lieb algebra TLn(q). Let i = 1, . . . , n− 2. We set

Gi,i+1 := 1 + qGi + qGi+1 + q2GiGi+1 + q2Gi+1Gi + q3GiGi+1Gi =
∑

w∈〈si,si+1〉

q`(w)Gw.

We define the Temperley–Lieb algebra TLn(q) to be the quotient Hn(q)/In, where In is the ideal generated
by the element G1,2 (if n ≤ 2, we take In = {0}). We have Gi,i+1 ∈ In for all i = 1, . . . , n− 2, since

Gi,i+1 = (G1G2 . . . Gn−1)i−1G1,2 (G1G2 . . . Gn−1)−(i−1).

Jones [Jo1] has shown that the set

BTLn(q) :=

{
(Gi1Gi1−1 . . . Gi1−k1) . . . (GipGip−1 . . . Gip−kp)

∣∣∣∣ 1 ≤ i1 < · · · < ip ≤ n− 1
1 ≤ i1 − k1 < · · · < ip − kp ≤ n− 1

}
is a basis of TLn(q) as an R-module. In particular, TLn(q) is a free R-module of rank Cn, where Cn denotes
the n-th Catalan number, that is,

Cn =
1

n+ 1

(
2n

n

)
=

1

n+ 1

n∑
k=0

(
n

k

)2

.

2.3. The Yokonuma–Hecke algebra Yd,n(q). The Yokonuma–Hecke algebra of type A, denoted by Yd,n(q),
is an R-associative algebra generated by the elements

g1, . . . , gn−1, t1, . . . , tn

subject to the following relations:

(2.3)

(b1) gigj = gjgi for all i, j = 1, . . . , n− 1 with |i− j| > 1,
(b2) gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n− 2,
(f1) titj = tjti for all i, j = 1, . . . , n,
(f2) tjgi = gitsi(j) for all i = 1, . . . , n− 1 and j = 1, . . . , n,
(f3) tdj = 1 for all j = 1, . . . , n,

where si denotes the transposition (i, i+ 1), together with the quadratic relations:

(2.4) g2
i = 1 + (q − q−1) ei gi for all i = 1, . . . , n− 1,

3



where

(2.5) ei :=
1

d

d−1∑
s=0

tsi t
d−s
i+1 .

Note that we have e2
i = ei and eigi = giei for all i = 1, . . . , n− 1. Moreover, we have

(2.6) tiei = ti+1ei for all i = 1, . . . , n− 1.

Remark 2.3. If we specialise q to 1, the defining relations (2.3)–(2.4) become the defining relations for the
complex reflection group G(d, 1, n) ∼= (Z/dZ)oSn. Thus, the algebra Yd,n(q) is a deformation of C[G(d, 1, n)].
Moreover, for d = 1, the Yokonuma–Hecke algebra Y1,n(q) coincides with the Iwahori–Hecke algebra Hn(q)
of type A.

Remark 2.4. The relations (b1), (b2), (f1) and (f2) are defining relations for the classical framed braid
group Fn ∼= Z oBn, where Bn is the classical braid group on n strands, with the tj ’s being interpreted as the
“elementary framings” (framing 1 on the jth strand). The relations tdj = 1 mean that the framing of each
braid strand is regarded modulo d. Thus, the algebra Yd,n(q) arises naturally as a quotient of the framed
braid group algebra R[Fn] over the modular relations (f3) and the quadratic relations (2.4). Moreover,
relations (2.3) are defining relations for the modular framed braid group Fd,n ∼= (Z/dZ) oBn, so the algebra
Yd,n(q) can be also seen as a quotient of the modular framed braid group algebra R[Fd,n] over the quadratic
relations (2.4).

Remark 2.5. The generators gi satisfying the quadratic relation (2.4) were introduced in [ChPdA]. In all
the papers [Ju2, JuLa2, JuLa3, JuLa4, ChLa, GJKL1, GJKL2] prior to [ChPdA], the authors consider the
braid generators gi := gi+(q−1) eigi (and thus, gi = gi+(q−1−1) eigi), which satisfy the quadratic relation

(2.7) g2
i = 1 + (q2 − 1) ei + (q2 − 1) ei gi ,

and the Yokonuma–Hecke algebra is defined over the ring C[q2, q−2]. Note that

(2.8) eigi = qeigi for all i = 1, . . . , n− 1.

Remark 2.6. In [ChPo2, ChPo3], we consider the braid generators g̃i := qgi, which satisfy the quadratic
relation

(2.9) g̃2
i = q2 + (q2 − 1) ei g̃i ,

and the Yokonuma–Hecke algebra is defined over the ring C[q2, q−2]. Note that

(2.10) eig̃i = qeigi for all i = 1, . . . , n− 1.

Let w ∈ Sn and let w = si1si2 . . . sir be a reduced expression for w. By Matsumoto’s lemma, the element
gw := gi1gi2 . . . gir is well defined. Juyumaya [Ju2] has shown that the set

BYd,n(q) := {ta11 ta22 . . . tann gw | 0 ≤ a1, a2, . . . , an ≤ d− 1, w ∈ Sn}
forms a basis of Yd,n(q) over R, which is called the standard basis. In particular, Yd,n(q) is a free R-module
of rank dnn!.

2.4. The Framisation of the Temperley–Lieb algebra FTLd,n(q). Let i = 1, . . . , n− 2. We set

gi,i+1 := 1 + qgi + qgi+1 + q2gigi+1 + q2gi+1gi + q3gigi+1gi =
∑

w∈〈si,si+1〉

q`(w)gw.

We define the Framisation of the Temperley–Lieb algebra to be the quotient Yd,n(q)/Id,n, where Id,n is the
ideal generated by the element e1e2 g1,2 (if n ≤ 2, we take Id,n = {0}). Note that, due to (2.6), the product
e1e2 commutes with g1 and with g2, so it commutes with g1,2. Further, we have eiei+1gi,i+1 ∈ Id,n for all
i = 1, . . . , n− 2, since

eiei+1gi,i+1 = (g1g2 . . . gn−1)i−1 e1e2 g1,2 (g1g2 . . . gn−1)−(i−1).

Remark 2.7. The ideal Id,n is also generated by the element
∑

0≤a,b≤d−1 t
a
1t
b
2t
−a−b
3 g1,2.

Remark 2.8. For d = 1, the Framisation of the Temperley–Lieb algebra FTL1,n(q) coincides with the
classical Temperley–Lieb algebra TLn(q).
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Remark 2.9. In [GJKL2], the Framisation of the Temperley–Lieb algebra is defined to be the quotient
Yd,n(q)/Id,n, where Id,n is the ideal generated by the element e1e2 g1,2, where

g1,2 = 1 + g1 + g2 + g1g2 + g2g1 + g1g2g1.

Due to (2.8) and the fact that the ei’s are idempotents, we have e1e2 g1,2 = e1e2 g1,2, and so Id,n = Id,n.

Remark 2.10. In [ChPo2, ChPo3], we define the Framisation of the Temperley–Lieb algebra to be the

quotient Yd,n(q)/Ĩd,n, where Ĩd,n is the ideal generated by the element e1e2 g̃1,2, where

g̃1,2 = 1 + g̃1 + g̃2 + g̃1g̃2 + g̃2g̃1 + g̃1g̃2g̃1.

Due to (2.10) and the fact that the ei’s are idempotents, we have e1e2 g̃1,2 = e1e2 g1,2, and so Id,n = Ĩd,n.

3. An isomorphism theorem for the Framisation of the Temperley–Lieb algebra

Lusztig has proved that Yokonuma–Hecke algebras are isomorphic to direct sums of matrix algebras over
certain subalgebras of classical Iwahori–Hecke algebras [Lu, §34]. For the Yokonuma–Hecke algebras Yd,n(q),
these are all tensor products of Iwahori–Hecke algebras of type A. This result was reproved in [JaPdA] using
the presentation of Yd,n(q) given by Juyumaya. Since we use the same presentation, we will use the latter
exposition of the result in order to prove an analogous statement for FTLd,n(q).

3.1. Compositions and Young subgroups. Let µ ∈ Compd(n), where

Compd(n) = {µ = (µ1, µ2, . . . , µd) ∈ Nd |µ1 + µ2 + · · ·+ µd = n}.

We say that µ is a composition of n with d parts. The Young subgroup Sµ of Sn is the subgroup Sµ1 ×
Sµ2

× · · · ×Sµd , where Sµ1
acts on the letters {1, . . . , µ1}, Sµ2

acts on the letters {µ1 + 1, . . . , µ1 + µ2},
and so on. Thus, Sµ is a parabolic subgroup of Sn generated by the transpositions sj = (j, j + 1) with
j ∈ Jµ := {1, . . . , n− 1} \ {µ1, µ1 + µ2, . . . , µ1 + µ2 + · · ·+ µd−1}.

We have an Iwahori–Hecke algebra Hµ(q) associated with Sµ, which is the subalgebra of Hn(q) generated
by {Gj | j ∈ Jµ}. The algebra Hµ(q) is a free R-module with basis {Gw |w ∈ Sµ}, and it is isomorphic to
the tensor product (over R) of Iwahori–Hecke algebras Hµ1

(q)⊗Hµ2
(q)⊗ · · · ⊗Hµd(q) (with Hµi(q) ∼= R if

µi ≤ 1).
For i = 1, . . . , d, we denote by ρµi the natural surjection Hµi(q) � Hµi(q)/Iµi ∼= TLµi(q), where Iµi

is the ideal generated by Gµ1+···+µi−1+1,µ1+···+µi−1+2 if µi > 2 and Iµi = {0} if µi ≤ 2. We obtain that
ρµ := ρµ1 ⊗ρµ2 ⊗· · ·⊗ρµd is a surjective R-algebra homomorphism Hµ(q) � TLµ(q), where TLµ(q) denotes
the tensor product of Temperley–Lieb algebras TLµ1

(q)⊗ TLµ2
(q)⊗ · · · ⊗ TLµd(q).

3.2. An isomorphism theorem for the Yokonuma–Hecke algebra Yd,n(q). Let {ξ1, . . . , ξd} be the
set of all d-th roots of unity (ordered arbitrarily). Let χ be an irreducible character of the abelian group
Ad,n ∼= (Z/dZ)n generated by the elements t1, t2, . . . , tn. There exists a primitive idempotent of C[Ad,n]
associated with χ defined as

Eχ :=

n∏
j=1

(
1

d

d−1∑
s=0

χ(tsj)t
d−s
j

)
=

n∏
j=1

(
1

d

d−1∑
s=0

χ(tj)
std−sj

)
.

Moreover, we can define a composition µχ ∈ Compd(n) by setting

µχi := #{j ∈ {1, . . . , n} |χ(tj) = ξi} for all i = 1, . . . , d.

Conversely, given a composition µ ∈ Compd(n), we can consider the subset Irrµ(Ad,n) of Irr(Ad,n) defined
as

Irrµ(Ad,n) := {χ ∈ Irr(Ad,n) |µχ = µ}.
There is an action of Sn on Irrµ(Ad,n) given by

w(χ)(tj) := χ(tw−1(j)) for all w ∈ Sn, j = 1, . . . , n.
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Let χµ1 ∈ Irrµ(Ad,n) be the character given by

χµ1 (t1) = · · · = χµ1 (tµ1
) = ξ1

χµ1 (tµ1+1) = · · · = χµ1 (tµ1+µ2
) = ξ2

χµ1 (tµ1+µ2+1) = · · · = χµ1 (tµ1+µ2+µ3) = ξ3
...

...
...

...
...

...
...

χµ1 (tµ1+···+µd−1+1) = · · · = χµ1 (tn) = ξd

The stabiliser of χµ1 under the action of Sn is the Young subgroup Sµ. In each left coset in Sn/Sµ, we can
take a representative of minimal length; such a representative is unique (see, for example, [GePf, §2.1]). Let

{πµ,1, πµ,2, . . . , πµ,mµ}

be this set of distinguished left coset representatives of Sn/Sµ, with

mµ =
n!

µ1!µ2! . . . µd!

and the convention that πµ,1 = 1. Then, if we set

χµk := πµ,k(χµ1 ) for all k = 1, . . . ,mµ,

we have

Irrµ(Ad,n) = {χµ1 , χ
µ
2 , . . . , χ

µ
mµ}.

We now set

Eµ :=
∑

χ∈Irrµ(Ad,n)

Eχ =

mµ∑
k=1

Eχµk .

Since the set {Eχ |χ ∈ Irr(Ad,n)} forms a complete set of orthogonal idempotents in Yd,n(q), and

(3.1) tjEχ = Eχtj = χ(tj)Eχ and gwEχ = Ew(χ)gw

for all χ ∈ Irr(Ad,n), j = 1, . . . , n and w ∈ Sn, we have that the set {Eµ |µ ∈ Compd(n)} forms a complete
set of central orthogonal idempotents in Yd,n(q) (cf. [JaPdA, §2.4]). In particular, we have the following
decomposition of Yd,n(q) into a direct sum of two-sided ideals:

Yd,n(q) =
⊕

µ∈Compd(n)

EµYd,n(q).

We can now define an R-linear map

Ψµ : EµYd,n(q)→ Matmµ(Hµ(q))

as follows: for all k ∈ {1, . . . ,mµ} and w ∈ Sn, we set

Ψµ(Eχµk gw) := Gπ−1
µ,kwπµ,l

Mk,l ,

where l ∈ {1, . . . ,mµ} is uniquely defined by the relation w(χµl ) = χµk and Mk,l is the elementary mµ ×mµ

matrix with 1 in position (k, l). Note that π−1
µ,kwπµ,l ∈ Sµ. We also define an R-linear map

Φµ : Matmµ(Hµ(q))→ EµYd,n(q)

as follows: for all k, l ∈ {1, . . . ,mµ} and w ∈ Sµ, we set

Φµ(GwMk,l) := Eχµk gπµ,kwπ−1
µ,l
Eχµl .

Then we have the following [JaPdA, Theorem 3.1]:

Theorem 3.1. Let µ ∈ Compd(n). The linear map Ψµ is an isomorphism of R-algebras with inverse map
Φµ. As a consequence, the map

Ψd,n :=
⊕

µ∈Compd(n)

Ψµ : Yd,n(q)→
⊕

µ∈Compd(n)

Matmµ(Hµ(q))
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is also an isomorphism of R-algebras, with inverse map

Φd,n :=
⊕

µ∈Compd(n)

Φµ :
⊕

µ∈Compd(n)

Matmµ(Hµ(q))→ Yd,n(q).

Remark 3.2. In [ChPo3], we show that we can construct similar isomorphisms over the smaller ring

C[q2, q−2] when we consider the generators g̃i := qgi and G̃i := qGi. Note that

Ψµ(Eχµk g̃w) := q`(w)−`(π−1
µ,kwπµ,l)G̃π−1

µ,kwπµ,l
Mk,l

and

Φµ(G̃wMk,l) := q`(w)−`(π−1
µ,kwπµ,l)Eχµk g̃πµ,kwπ−1

µ,l
Eχµl .

In order to do this, we make use of Deodhar’s lemma (see, for example, [GePf, Lemma 2.1.2]) about the
distinguished left coset representatives of Sn/Sµ:

Lemma 3.3. (Deodhar’s lemma) Let µ ∈ Compd(n). For all k ∈ {1, . . . ,mµ} and i = 1, . . . , n − 1, let
l ∈ {1, . . . ,mµ} be uniquely defined by the relation si(χ

µ
l ) = χµk . We have

π−1
µ,ksiπµ,l =

 1 if k 6= l;

sj if k = l,

for some j ∈ Jµ.

Deodhar’s lemma implies that, for all i = 1, . . . , n − 1, Ψµ(Eµg̃i) is a symmetric matrix whose diagonal

non-zero coefficients are of the form G̃j with j ∈ Jµ, while all non-diagonal non-zero coefficients are equal
to q. Thus, if consider the diagonal matrix

Uµ :=

mµ∑
k=1

q`(πµ,k)Mk,k,

the coefficients of the matrix UµΨµ(Eµg̃i)U
−1
µ satisfy:

(UµΨµ(Eµg̃i)U
−1
µ )k,l = q(`(πµ,k)−`(πµ,l))(Ψµ(Eµg̃i))k,l ,

for all k, l ∈ {1, . . . ,mµ}. Therefore, following the definition of Ψµ and Deodhar’s lemma, the matrix
UµΨµ(Eµg̃i)U

−1
µ is a matrix whose diagonal coefficients are the same as the diagonal coefficients of Ψµ(Eµg̃i)

(and thus of the form G̃j with j ∈ Jµ), while all non-diagonal non-zero coefficients are equal to either 1 or
q2. Moreover, since, for all j = 1, . . . , n,

Ψµ(Eµtj) =

mµ∑
k=1

χµk(tj)Mk,k

is a diagonal matrix, we have UµΨµ(Eµtj)U
−1
µ = Ψµ(Eµtj). We conclude that the map

Ψ̃µ : EµYd,n(q)→ Matmµ(Hµ(q))

defined by

Ψ̃µ(Eµa) := UµΨµ(Eµa)U−1
µ ,

for all a ∈ Yd,n(q), is an isomorphism of C[q2, q−2]-algebras. Its inverse is the map

Φ̃µ : Matmµ(Hµ(q))→ EµYd,n(q)

defined by

Φ̃µ(A) := Φµ(U−1
µ AUµ),

for all A ∈ Matmµ(Hµ(q)). As a consequence, the map

Ψ̃d,n :=
⊕

µ∈Compd(n)

Ψ̃µ : Yd,n(q)→
⊕

µ∈Compd(n)

Matmµ(Hµ(q))
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is also an isomorphism of C[q2, q−2]-algebras, with inverse map

Φ̃d,n :=
⊕

µ∈Compd(n)

Φ̃µ :
⊕

µ∈Compd(n)

Matmµ(Hµ(q))→ Yd,n(q).

3.3. From FTLd,n(q) to Temperley–Lieb. Recall that FTLd,n(q) is the quotient Yd,n(q)/Id,n, where Id,n
is the ideal generated by the element e1e2 g1,2 (with Id,n = {0} if n ≤ 2). Let µ ∈ Compd(n). We will study
the image of e1e2 g1,2 under the isomorphism Ψµ.

By (3.1), for all i = 1, . . . , n− 1 and χ ∈ Irr(Ad,n), we have

(3.2) eiEχ = Eχei =
1

d

d−1∑
s=0

χ(ti)
sχ(ti+1)d−sEχ =

 Eχ if χ(ti) = χ(ti+1);

0 if χ(ti) 6= χ(ti+1).

We deduce that, for all k = 1, . . . ,mµ,

(3.3) Eχµk e1e2g1,2 =


Eχµk g1,2 if χµk(t1) = χµk(t2) = χµk(t3);

0 otherwise .

Proposition 3.4. Let µ ∈ Compd(n) and k ∈ {1, . . . ,mµ}. We have

Ψµ(Eχµk e1e2g1,2) =

 Gi,i+1Mk,k for some i ∈ {1, . . . , n− 2} if χµk(t1) = χµk(t2) = χµk(t3);

0 otherwise .

Thus, Ψµ(Eµe1e2g1,2) is a diagonal matrix in Matmµ(Hµ(q)) with all non-zero coefficients being of the form
Gi,i+1 for some i ∈ {1, . . . , n− 2}.

Proof. If χµk(t1) = χµk(t2) = χµk(t3), then w(χµk) = χµk for all w ∈ 〈s1, s2〉 ⊆ Sn, and so

(3.4) Ψµ(Eχµk g1,2) =
∑

w∈〈s1,s2〉

Ψµ(Eχµk gw) =
∑

w∈〈s1,s2〉

Gπ−1
µ,kwπµ,k

Mk,k.

We will show that there exists i ∈ {1, . . . , n− 2} such that∑
w∈〈s1,s2〉

Gπ−1
µ,kwπµ,k

= Gi,i+1.

By Lemma 3.3, there exist i, j ∈ Jµ such that

π−1
µ,ks1πµ,k = si and π−1

µ,ks2πµ,k = sj .

Consequently, π−1
µ,ks1s2πµ,k = sisj , π

−1
µ,ks2s1πµ,k = sjsi and π−1

µ,ks1s2s1πµ,k = sisjsi. Moreover, since s1 and

s2 do not commute, si and sj do not commute either, so we must have j ∈ {i− 1, i+ 1}. Hence, if j = i− 1,
then ∑

w∈〈s1,s2〉

Gπ−1
µ,kwπµ,k

= Gi−1,i,

while if j = i+ 1, then ∑
w∈〈s1,s2〉

Gπ−1
µ,kwπµ,k

= Gi,i+1.

We conclude that there exists i ∈ {1, . . . , n− 2} such that∑
w∈〈s1,s2〉

Gπ−1
µ,kwπµ,k

= Gi,i+1,

whence we deduce that

Ψµ(Eχµk g1,2) = Gi,i+1Mk,k.

Combining this with (3.3) yields the desired result. �
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Example 3.5. Let us consider the case d = 2 and n = 4. We have

(µ,mµ) ∈ {((4, 0), 1), ((3, 1), 4), ((2, 2), 6), ((1, 3), 4), ((0, 4), 1)}.

Then

Ψµ(Eχµk e1e2g1,2) =



G1,2 if µ = (4, 0) or µ = (0, 4) ,

G1,2M1,1 if µ = (3, 1) and k = 1 ,

G2,3M4,4 if µ = (1, 3) and k = 4 ,

0 otherwise ,

where we take π(1,3),4 = s3s2s1.

Now, recall the surjective R-algebra homomorphism ρµ : Hµ(q) � TLµ(q) defined in §3.1. The map ρµ

induces a surjective R-algebra homomorphism Matmµ(Hµ(q)) � Matmµ(TLµ(q)), which we also denote by
ρµ. We obtain that

ρµ ◦Ψµ : EµYd,n(q)→ Matmµ(TLµ(q))

is a surjective R-algebra homomorphism.
In order for ρµ ◦Ψµ to factor through EµYd,n(q)/EµId,n ∼= EµFTLd,n(q), all elements of EµId,n have to

belong to the kernel of ρµ ◦Ψµ. Since Id,n is the ideal generated by the element e1e2g1,2, it is enough to show
that (ρµ ◦ Ψµ)(e1e2g1,2) = 0. This is immediate by Proposition 3.4. Hence, if we denote by %µ the natural
surjection EµYd,n(q) � EµYd,n(q)/EµId,n ∼= EµFTLd,n(q), there exists a unique R-algebra homomorphism
ψµ : EµFTLd,n(q)→ Matmµ(TLµ(q)) such that the following diagram is commutative:

(3.5)

EµYd,n(q)

%µ

��

Ψµ // Matmµ(Hµ(q))

ρµ

��
EµFTLd,n(q)

ψµ // Matmµ(TLµ(q))

Since ρµ ◦Ψµ is surjective, ψµ is also surjective.

3.4. From Temperley–Lieb to FTLd,n(q). We now consider the surjective R-algebra homomorphism:

%µ ◦ Φµ : Matmµ(Hµ(q))→ EµFTLd,n(q),

where Φµ is the inverse of Ψµ. In order for %µ ◦ Φµ to factor through Matmµ(TLµ(q)), we have to show
that Gi,i+1Mk,l belongs to the kernel of %µ ◦ Φµ for all i = 1, . . . , n − 2 such that Gi,i+1 ∈ Hµ(q) (that is,
{i, i+ 1} ⊆ Jµ) and for all k, l ∈ {1, . . . ,mµ}. Since

Gi,i+1Mk,l = Mk,1Gi,i+1M1,1M1,l

and %µ ◦ Φµ is an homomorphism of R-algebras, it is enough to show that (%µ ◦ Φµ)(Gi,i+1M1,1) = 0.
Let i = 1, . . . , n− 2 such that Gi,i+1 ∈ Hµ(q). By definition of Φµ, and since πµ,1 = 1, we have

(3.6) Φµ(Gi,i+1M1,1) = Eχµ1 gi,i+1Eχµ1 .

Now, since Gi,i+1 ∈ Hµ(q), there exists j ∈ {1, . . . , d} such that µj > 2 and Gi,i+1 ∈ Hµj (q), that is,
i ∈ {µ1 + · · ·+ µj−1 + 1, . . . , µ1 + · · ·+ µj−1 + µj − 2}. By definition of χµ1 , we have

χµ1 (tµ1+···+µj−1+1) = · · · = χµ1 (tµ1+···+µj−1+µj ) = ξj ,

whence

χµ1 (ti) = χµ1 (ti+1) = χµ1 (ti+2) = ξj .

Following (3.2), we obtain

Φµ(Gi,i+1M1,1) = Eχµ1 gi,i+1Eχµ1 = Eχµ1 eiei+1gi,i+1Eχµ1 .

Since eiei+1gi,i+1 ∈ Id,n, we deduce that (%µ ◦ Φµ)(Gi,i+1M1,1) = 0, as desired.
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We conclude that there exists a unique R-algebra homomorphism φµ : Matmµ(TLµ(q)) → EµFTLd,n(q)
such that the following diagram is commutative:

(3.7)

EµYd,n(q)

%µ

��

Φµoo Matmµ(Hµ(q))

ρµ

��
EµFTLd,n(q)

φµoo Matmµ(TLµ(q))

Since %µ ◦ Φµ is surjective, φµ is also surjective.

3.5. An isomorphism theorem for the Framisation of the Temperley–Lieb algebra FTLd,n(q).
We are now ready to prove the main result of this section.

Theorem 3.6. Let µ ∈ Compd(n). The linear map ψµ is an isomorphism of R-algebras with inverse map
φµ. As a consequence, the map

ψd,n :=
⊕

µ∈Compd(n)

ψµ : FTLd,n(q)→
⊕

µ∈Compd(n)

Matmµ(TLµ(q))

is also an isomorphism of R-algebras, with inverse map

φd,n :=
⊕

µ∈Compd(n)

φµ :
⊕

µ∈Compd(n)

Matmµ(TLµ(q))→ FTLd,n(q).

Proof. Since the diagrams (3.5) and (3.7) are commutative, we have

ρµ ◦Ψµ = ψµ ◦ %µ and %µ ◦ Φµ = φµ ◦ ρµ.

This implies that

ρµ ◦Ψµ ◦ Φµ = ψµ ◦ φµ ◦ ρµ and %µ ◦ Φµ ◦Ψµ = φµ ◦ ψµ ◦ %µ.

By Theorem 3.1, Ψµ ◦ Φµ = idMatmµ (Hµ(q)) and Φµ ◦Ψµ = idEµYd,n(q), whence

ρµ = ψµ ◦ φµ ◦ ρµ and %µ = φµ ◦ ψµ ◦ %µ.

Since the maps ρµ and %µ are surjective, we obtain

ψµ ◦ φµ = idMatmµ (TLµ(q)) and φµ ◦ ψµ = idEµFTLd,n(q),

as desired. �

Remark 3.7. In [ChPo3], we show that we can construct similar isomorphisms over the smaller ring

C[q2, q−2] when we consider the generators g̃i = qgi and G̃i = qGi. For this, we use the presentation

of FTLd,n(q) given in Remark 2.10 and the isomorphisms Ψ̃µ and Φ̃µ defined in Remark 3.2.

3.6. A basis for the Framisation of the Temperley–Lieb algebra FTLd,n(q). We recall that in §2.2
we defined a basis BTLn(q) for the Temperley–Lieb algebra TLn(q). Thanks to Theorem 3.6, we obtain the
following basis for FTLd,n(q) as an R-module:

Proposition 3.8. The set{
φµ(b1b2 . . . bdMk,l) |µ ∈ Compd(n), bi ∈ BTLµi (q)

for all i = 1, . . . , d, 1 ≤ k, l ≤ mµ

}
is a basis of FTLd,n(q) as an R-module. In particular, FTLd,n(q) is a free R-module of rank∑

µ∈Compd(n)

m2
µ Cµ1

Cµ2
· · ·Cµd .
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4. Markov traces and link invariants

The presentation for the Temperley–Lieb algebra given in §2.2 is due to Jones, who used a Markov trace
defined on it, the Jones–Ocneanu trace, to construct his famous polynomial invariant for classical links, the
Jones polynomial [Jo2]. A similar construction on the Framisation of the Temperley–Lieb algebra yields
invariants for framed and classical links [GJKL2]. In this section, we will relate the latter to the Jones
polynomial using the isomorphism of Theorem 3.6.

4.1. The inductive Jones–Ocneanu trace. Using the natural algebra inclusions Hn(q) ⊂ Hn+1(q) for
n ∈ N (setting Hn(q) := R for n ≤ 1), we can define the Jones–Ocneanu trace on

⋃
n≥0Hn(q) as follows

[Jo2, Theorem 5.1]:

Theorem 4.1. Let z be an indeterminate over C. There exists a unique linear Markov trace

τz :
⋃
n≥0

Hn(q) −→ R[z]

defined inductively on Hn(q), for all n ≥ 0, by the following rules:

τz(1) = 1 1 ∈ Hn(q)
τz(ab) = τz(ba) a, b ∈ Hn(q)

τz(aGn) = z τz(a) a ∈ Hn(q).

It is easy to check (by solving the equation τz(G1,2) = 0) that the trace τz passes to the quotient
Temperley–Lieb algebra TLn(q) if and only if

z = − 1

q2(q + q−1)
= − 1

q3 + 1
or z = −q−1 .

The second value is discarded as not being topologically interesting. For z = −(q3 + 1)−1, we will simply
denote τz by τ .

Recall that we denote by ρn the natural surjection Hn(q) � Hn(q)/In ∼= TLn(q). Let us denote by
σ1, . . . , σn−1 the generators of the classical braid group Bn, such that the natural epimorphism δn : RBn �
Hn(q) is given by δn(σi) = Gi. Then ρn ◦ δn : RBn � TLn(q) is also an epimorphism.

Let now L denote the set of oriented links. For any α ∈ Bn, we denote by α̂ the link obtained as the closure
of α. By the Alexander Theorem, we have L = ∪n{α̂ |α ∈ Bn}. Further, by the Markov Theorem, isotopy
of links is generated by conjugation in Bn (αβ ∼ βα) and by positive and negative stabilisation (α ∼ ασ±1

n ).
Jones’s method for constructing polynomial link invariants consists of normalising and re-scaling τ with
respect to the latter: For any α ∈ Bn, let

Vq(α̂) := (−q − q−1)n−1q2ε(α) (τ ◦ ρn ◦ δn)(α) ,

where ε(α) is the sum of the exponents of the braiding generators σi in the word α. Then the map

Vq : L → R, α̂ 7→ Vq(α̂)

is an 1-variable ambient isotopy invariant of oriented links, known as the Jones polynomial (cf. [Jo2]).

Example 4.2. We consider the Hopf link with two positive crossings, which is the closure of the braid
σ2

1 ∈ B2. We have

Vq(σ̂2
1) = (−q − q−1)q4τ(G2

1) = −(q + q−1)q4

(
1− q − q−1

q2(q + q−1)

)
= −(q + q−1)q4 + (q − q−1)q2 = −q5 − q.

Figure 1. The Hopf link with two positive crossings.
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Remark 4.3. More generally, for any value of z, the trace τz can be normalised and re-scaled with respect
to positive and negative stabilisation as follows: For any α ∈ Bn, let

Pq,z(α̂) := Λn−1
H (

√
λH)ε(α) (τz ◦ δn)(α) ,

where

λH :=
z − (q − q−1)

z
and ΛH :=

1

z
√
λH

.

Then the map

Pq,z : L → R[z±1,
√
λH
±1

], α̂ 7→ Pq,z(α̂)

is a 2-variable invariant of oriented links, known as the HOMFLYPT polynomial (cf. [HOMFLY, PT]). For
z = −(q3 + 1)−1, we get λH = q4 and ΛH = −q − q−1, whence Pq,z = Vq.

4.2. The stabilised Jones–Ocneanu traces. Instead of normalising and re-scaling the Jones–Ocneanu
trace τ , we can consider a family of traces τn : Hn(q) → R for n ∈ N that are stabilised by definition.
However, for any a ∈ Hn(q), we have τn(a) 6= τn+1(a).

More specifically, let us consider the Iwahori–Hecke algebra Hn(q) with braid generators G′i := q2Gi.
These satisfy the quadratic relation

(4.1) G′i
2

= q4 + q2(q − q−1)G′i.

We then have the following (see, for example, [GePf, Theorem 4.5.2]):

Theorem 4.4. There exists a unique family of R-linear Markov traces τn : Hn(q)→ R such that

τ1(1) = 1
τn(ab) = τn(ba) a, b ∈ Hn(q)

τn+1(aG′n) = τn+1(aG′n
−1

) = τn(a) a ∈ Hn(q).

Moreover, we have τn+1(a) = (−q − q−1)τn(a) for all a ∈ Hn(q).

We observe that

G1,2 = 1 + q−1G′1 + q−1G′2 + q−2G′1G
′
2 + q−2G′2G

′
1 + q−3G′1G

′
2G
′
1.

We have
τ3(1) = (−q − q−1)2τ1(1) = q2 + 2 + q−2

τ3(G′1) = (−q − q−1)τ2(G′1) = (−q − q−1)τ1(1) = −q − q−1

τ3(G′2) = τ2(1) = (−q − q−1)τ1(1) = −q − q−1

τ3(G′1G
′
2) = τ2(G′1) = τ1(1) = 1

τ3(G′2G
′
1) = τ2(G′1) = τ1(1) = 1

τ3(G′1G
′
2G
′
1) = τ2(G′1

2
) = q4τ2(1) + q2(q − q−1)τ2(G′1) = −q5 − q

whence

τ3(G1,2) = q2 + 2 + q−2 − 2− 2q−2 + 2q−2 − q2 − q−2 = 0.

Since we have

τn(G1,2) = (−q − q−1)n−3τ3(G1,2),

the trace τn factors through the Temperley–Lieb algebra TLn(q) for all n ∈ N. Further, if we consider the
natural epimorphism δ′n : RBn � Hn(q) given by δ′(σi) = G′i, we have [Jo2, §11]:

(4.2) (τn ◦ ρn ◦ δ′n)(α) = Vq(α̂) for all α ∈ Bn.

Example 4.5. We have

(τ2 ◦ ρ2 ◦ δ′2)(σ2
1) = τ2(G′1

2
) = −q5 − q.

Remark 4.6. More generally, for any value of z, if we consider the braid generators G′i :=
√
λHGi, where

λH = z−(q−q−1)
z , and we define a family of stabilised Jones–Ocneanu traces (τnz )n∈N as in Theorem 4.4, with

τn+1
z (a) = (

√
zλH)−1τnz (a) and with values in R[z±1,

√
λH
±1

], then we have [Jo2, (6.2)]:

(τnz ◦ δ′n)(α) = Pq,z(α̂) for all α ∈ Bn.
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4.3. The inductive Juyumaya trace. An important property of the Yokonuma–Hecke algebra is that it
also supports a Markov trace defined for all values of n. More precisely, due to the inclusions Yd,n(q) ⊂
Yd,n+1(q) (setting Yd,0(q) := R), we obtain (cf. [Ju1, Theorem 12]):

Theorem 4.7. Let z, x1, . . . , xd−1 be indeterminates over C. There exists a unique linear Markov trace

trd,z :
⋃
n≥0

Yd,n(q) −→ C[z, x1, . . . , xd−1]

defined inductively on Yd,n(q), for all n ≥ 0, by the following rules:

trd,z(1) = 1 1 ∈ Yd,n(q)
trd,z(ab) = trd,z(ba) a, b ∈ Yd,n(q)

trd,z(agn) = z trd,z(a) a ∈ Yd,n(q)
trd,z(at

k
n+1) = xk trd,z(a) a ∈ Yd,n(q) (1 ≤ k ≤ d− 1).

Remark 4.8. Note that, for d = 1, the trace tr1,z is defined by only the first three rules. Thus, tr1 coincides
with the Jones–Ocneanu trace τz on the Iwahori–Hecke algebra Hn(q) ∼= Y1,n(q).

The values of the parameters for which the trace trd,z passes to the quotient algebra FTLd,n(q) are given
in [GJKL2, Theorem 6]; their determination is not straightforward as in the classical case. However, not all
of them are topologically interesting.

First, let us denote by %d,n the natural surjection Yd,n(q) � Yd,n(q)/Id,n ∼= FTLd,n(q). Recall that
we denote by Fn the classical framed braid group. We have Fn ∼= Z o Bn, and there exists a natural

epimorphism γd,n : RFn � Yd,n(q) given by γd,n(σi) = gi and γd,n(tkj ) = t
k(mod d)
j for all k ∈ Z. The map

%d,n ◦ γd,n : RFn � FTLd,n(q) is also an algebra epimorphism.
Let now Lf denote the set of oriented framed links. By the Alexander Theorem, we have Lf = ∪n{α̂ |α ∈

Fn}. Further, by the Markov Theorem for framed links [KoSm, Lemma 1], isotopy of framed links is
generated by conjugation in Fn (αβ ∼ βα) and by positive and negative stabilisation (α ∼ ασ±1

n ), for any
n. In view of all this, Juyumaya and Lambropoulou [JuLa2] attempted to normalise and re-scale the trace
trd,z in order to obtain invariants for framed knots and links following Jones’s method; they discovered that
this is the only Markov trace known in literature that cannot be re-scaled directly. They showed that trd,z
re-scales when the parameters (xk)1≤k≤d−1 satisfy the following system of equations, known as the E-system:

(4.3)

d−1∑
s=0

xk+sxd−s = xk

d−1∑
s=0

xsxd−s (1 ≤ k ≤ d− 1),

with x0 = xd = 1. The solutions of the E-system where computed by Gérardin in the Appendix of [GJKL2]
and they are parametrised by the non-empty subsets of Z/dZ: If D is such a subset, then

xk =
1

|D|
∑
j∈D

exp

(
2πijk

d

)
(1 ≤ k ≤ d− 1).

For the rest of the paper, D will denote a non-empty subset of Z/dZ and (x1, . . . , xd−1) will be the
corresponding solution of the E-system. We will denote by trd,D,z the Juyumaya trace with these parameters
and we will call it the specialised Juyumaya trace. We have trd,D,z(ei) = 1/|D| =: ED for all i. According
to [GJKL2, (7.7)], the trace trd,D,z passes to the quotient algebra FTLd,n(q) if and only if

z = − ED
q2(q + q−1)

= − ED
q3 + 1

or z = −ED
q
.

The second value is discarded as not being topologically interesting. For z = −ED(q3 + 1)−1, we will simply
denote trd,D,z by trd,D. Normalising and re-scaling trd,D with respect to positive and negative stabilisation
yields the following: For any α ∈ Fn, let

φd,D,q(α̂) :=

(
−q + q−1

ED

)n−1

q2ε(α) (trd,D ◦ %d,n ◦ γd,n)(α) ,

where ε(α) is the sum of the exponents of the braiding generators σi in the word α. Then the map

φd,D,q : Lf → R, α̂ 7→ φd,D,q(α̂)
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is an 1-variable ambient isotopy invariant of oriented framed links [GJKL2, (7.8)].
We denote by θd,D,q the restriction of φd,D,q to the set L of classical links; the map θd,D,q is an 1-variable

ambient isotopy invariant of oriented classical links.

Example 4.9. We consider the classical Hopf link with two positive crossings. We have

θd,D,q(σ̂2
1) =

(
−q + q−1

ED

)
q4trd,D(g2

1) =

(
−q + q−1

ED

)
q4

(
1− (q − q−1)ED

q2(q + q−1)

)
= −q

5 + q3

ED
+ q3 − q.

We now consider the framed Hopf link with framings 0 and 1. This is the closure of the framed braid t2σ
2
1 .

Note that (trd,D ◦ %d,n ◦ γd,n)(t2σ
2
1) = trd,D(t2g

2
1) = trd,D(g1t1g1) = trd,D(t1g

2
1) = (trd,D ◦ %d,n ◦ γd,n)(t1σ

2
1).

We have

trd,D(t1g
2
1) = trd,D(t1) + (q − q−1)trd,D(t1e1g1) = trd,D(t1)

(
1− (q − q−1)ED

q2(q + q−1)

)
= x1trd,D(g2

1).

We deduce that

φd,D,q(t̂2σ2
1) =

(
−q + q−1

ED

)
q4trd,D(t2g

2
1) = x1θd,D,q(σ

2
1) = x1

(
−q

5 + q3

ED
+ q3 − q

)
.

Remark 4.10. More generally, for any value of z, the trace trd,D,z can be normalised and re-scaled with
respect to positive and negative stabilisation as follows: For any α ∈ Fn, let

Φd,D,q,z(α̂) := Λn−1
D (

√
λD)ε(α) (trd,D,z ◦ γd,n)(α) ,

where

λD :=
z − (q − q−1)ED

z
and ΛD :=

1

z
√
λD

.

Then the map

Φd,D,q,z : Lf → R[z±1,
√
λD
±1

], α̂ 7→ Φd,D,q,z(α̂)

is a 2-variable invariant of oriented framed links [CJKL, Theorem 3.1]. For z = −ED(q3 + 1)−1, we get
λD = q4 and ΛD = −(q + q−1)/ED, whence Φd,D,q,z = φd,D,q.

We denote by Θd,D,q,z the restriction of Φd,D,q,z to the set L of classical links; the map Θd,D,q,z is a
2-variable invariant of oriented classical links. For z = −ED(q3 + 1)−1, we have Θd,D,q,z = θd,D,q.

Remark 4.11. Using the same construction, but replacing the generators gi with the generators gi :=
gi + (q− 1) eigi, Juyumaya and Lambropoulou defined 2-variable invariants for framed [JuLa2] and classical
[JuLa3] links from the specialised Juyumaya trace on the Yokonuma–Hecke algebra Yd,n(q). Considering
the specialised Juyumaya trace on FTLd,n(q), but replacing again gi with gi, Goundaroulis, Juyumaya,
Kontogeorgis and Lambropoulou defined 1-variable invariants for framed and classical links in [GJKL2]. As
shown in [CJKL, Section 8], these invariants are not topologically equivalent to the ones we define in this
paper. There is no such issue when replacing gi with g̃i := qgi or with g′i := q2gi.

Remark 4.12. For d = 1, we have θ1,{0},q = Vq and Θ1,{0},q,z = Pq,z. More generally, when |D| = 1, it
was shown in [ChLa] that the invariants θd,D,q and Θd,D,q,z are equivalent to the Jones and HOMFLYPT
polynomials respectively.

4.4. The stabilised Jacon–Poulain d’Andecy traces. Similarly to the Jones–Ocneanu trace, instead of
normalising and re-scaling trd,D, we can consider a family of traces trnd,D : Yd,n(q) → R for n ∈ N that are

stabilised by definition. However, for any a ∈ Yd,n(q), we have trnd,D(a) 6= trn+1
d,D (a).

More specifically, let us consider the Yokonuma–Hecke algebra Yd,n(q) with braid generators g′i := q2gi.
These satisfy the quadratic relation

(4.4) g′i
2

= q4 + q2(q − q−1)eig
′
i.

We then have the following (see also [JaPdA, §5.2], [PdA, §5.2]):
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Theorem 4.13. There exists a unique family of R-linear Markov traces trnd,D : Yd,n(q)→ R such that

tr1
d,D(1) = 1

trnd,D(ab) = trnd,D(ba) a, b ∈ Yd,n(q)

trn+1
d,D (ag′n) = trn+1

d,D (ag′n
−1

) = trnd,D(a) a ∈ Yd,n(q)

trn+1
d,D (atkn+1) = xktrn+1

d,D (a) a ∈ Yd,n(q) (1 ≤ k ≤ d− 1).

Moreover, we have trn+1
d,D (a) = (−q − q−1)E−1

D trnd,D(a) for all a ∈ Yd,n(q).

First of all, note that

q4g′n
−1

= g′n − q2(q − q−1)en.

Therefore, for all a ∈ Yd,n(q), we have

q2(q − q−1)trn+1
d,D (aen) = trn+1

d,D (ag′n)− q4trn+1
d,D (ag′n

−1
) = (1− q4)trnd,D(a),

whence

(4.5) trn+1
d,D (aen) = (−q − q−1)trnd,D(a) = EDtrn+1

d,D (a).

Moreover,

(4.6) trn+1
d,D (aeng

′
n) =

1

d

d−1∑
s=0

trn+1
d,D (atsng

′
nt
d−s
n ) =

1

d

d−1∑
s=0

trnd,D(atsnt
d−s
n ) = trnd,D(a).

Now, we observe that

g1,2 = 1 + q−1g′1 + q−1g′2 + q−2g′1g
′
2 + q−2g′2g

′
1 + q−3g′1g

′
2g
′
1.

We have

tr3
d,D(e1e2) = (−q − q−1)tr2

d,D(e1) = (−q − q−1)2tr1
d,D(1) = q2 + 2 + q−2

tr3
d,D(e1e2g

′
1) = (−q − q−1)tr2

d,D(e1g
′
1) = (−q − q−1)tr1

d,D(1) = −q − q−1

tr3
d,D(e1e2g

′
2) = tr2

d,D(e1) = (−q − q−1)tr1
d,D(1) = −q − q−1

tr3
d,D(e1e2g

′
1g
′
2) = tr2

d,D(e1g
′
1) = tr1

d,D(1) = 1

tr3
d,D(e1e2g

′
2g
′
1) = tr2

d,D(e1g
′
1) = tr1

d,D(1) = 1

tr3
d,D(e1e2g

′
1g
′
2g
′
1) = tr2

d,D(e1g
′
1
2
) = q4tr2

d,D(e1) + q2(q − q−1)tr2
d,D(e1g

′
1) = −q5 − q

whence

tr3
d,D(e1e2g1,2) = q2 + 2 + q−2 − 2− 2q−2 + 2q−2 − q2 − q−2 = 0.

Since we have

trnd,D(e1e2g1,2) =

(
−q + q−1

ED

)n−3

tr3
d,D(e1e2g1,2),

the trace trnd,D factors through the Framisation of the Temperley–Lieb algebra FTLd,n(q) for all n ∈ N.

Further, if we consider the natural epimorphism γ′d,n : RFn � Yd,n(q) given by γ′d,n(σi) = g′i and γ′d,n(tkj ) =

t
k(mod d)
j for all k ∈ Z, we have [PdA, Remarks 5.4]:

(4.7) (trnd,D ◦ %d,n ◦ γ′d,n)(α) = φd,D,q(α̂) for all α ∈ Fn.

Example 4.14. We have

(tr2
d,D ◦ %d,2 ◦ γ′d,2)(σ2

1) = tr2
d,D(g′1

2
) = tr2

d,D(q4 + q2(q − q−1)e1g
′
1) = −q

5 + q3

ED
+ q3 − q.

and

(tr2
d,D ◦ %d,2 ◦ γ′d,2)(t2σ

2
1) = tr2

d,D(t1g
′
1
2
) = q4tr2

d,D(t1) + q2(q − q−1)tr1
d,D(t1) = x1

(
−q

5 + q3

ED
+ q3 − q

)
.
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Remark 4.15. More generally, for any value of z, if we consider the braid generators g′i :=
√
λDgi, where

λD = z−(q−q−1)ED
z , and we define a family of stabilised Jones–Ocneanu traces (trnd,D,z)n∈N as in Theorem

4.13, with trn+1
d,D,z(a) = (

√
zλD)−1trnd,D,z(a) and with values in R[z±1,

√
λD
±1

], then we have [PdA, Remarks

5.4]:
(trnd,D,z ◦ γ′d,n)(α) = Φd,D,q,z(α̂) for all α ∈ Fn.

4.5. Connecting the invariants with the use of the isomorphism theorem. In this last subsection,
we will only be interested in invariants of classical links. The invariants Θd,D,q,z and θd,D,q of §4.3 have been
further studied in [CJKL] and [GoLa] respectively. where their following properties have been proved:

(P1) They do not depend on d and D, but only on the cardinality of D (and equivalently on ED).

(P2) They can be generalised to skein link invariants where ED is taken to be an indeterminate.

(P3) They are not topologically equivalent to the HOMFLYPT polynomial and the Jones polynomial
respectively.

We will illustrate point (P3) for the invariant θd,D,q with the following example.

Example 4.16. We consider the link L := LLL(0) of [EKT] with the orientation of Figure 2. This is a
3-component link, whose components are one left-handed trefoil (T) and 2 unknots (U1 and U2). The link
L has the same Jones polynomial as the disjoint union of 3 unknots, even though it is not topologically
equivalent to it. We have:

Vq(L) = (q + q−1)2 = Vq(1̂B3)

Now, the link L is the closure of the following braid:

σ−1
1 σ2

2σ
−1
3 σ−1

2 σ−1
4 σ−2

3 σ−1
2 σ−1

1 σ2σ3σ
−3
2 σ3σ2σ4σ3σ2 ∈ B5.

In order to compute θd,D,q on the closure of this braid, we used the program designed for this reason by
Karvounis [Ka], which is available at http://www.math.ntua.gr/~sofia/yokonuma. We have that θd,D,q(L)
is equal to:

Vq(L) + (ED − 1)
q + q−1

E2
Dq

11

(
ED

(
q16 − 3q14 + 2q12 − 5q10 + 6q8 − 4q6 + 4q4 − 5q2 + 2

)
− q10 − q8 − q6 + q2

)
.

We observe that for ED = 1, θd,D,q(L) = Vq(L). Moreover,

θd,D,q(1̂B3) =

(
−q + q−1

ED

)2

= E−2
D Vq(1̂B3),

and so θd,D,q distinguishes two links that the Jones polynomial cannot distinguish.

Figure 2. The link LLL(0).
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In the Appendix of [CJKL], Lickorish gave a closed combinatorial formula for computing the value of
Θd,D,q,z on a link L which involves the HOMFLYPT polynomials of all sublinks of L and linking numbers
[CJKL, Theorem B.1]. A specialisation of the above formula for z = −ED(q3 + 1)−1 yields a similar result
for the invariant θd,D,q [GoLa, Corollary 2]. Lickorish’s formula for Θd,D,q,z was independently obtained by
Poulain d’Andecy and Wagner [PdAWa] with the use of Theorem 3.1. In this section, we will obtain the
corresponding formula for θd,D,q with the use of our Theorem 3.6.

First of all, due to property (P1), we can restrict our study to θd,q := θd,Z/dZ,q. In this case, ED = 1/d.
We have already seen that the stabilised Jones–Ocneanu traces defined in Theorem 4.4 factor through the
Temperley–Lieb algebra. Thus, one can define on⊕

µ∈Compd(n)

Matmµ(TLµ(q)) =
⊕

µ∈Compd(n)

Matmµ(TLµ1(q)⊗ TLµ2(q)⊗ · · · ⊗ TLµd(q))

the trace ∑
µ∈Compd(n)

(τµ1 ⊗ τµ2 ⊗ · · · ⊗ τµd) ◦ TrMatmµ

where TrMatmµ
denotes the usual trace of a matrix. By [JaPdA, §6], the map

Td,q : L → R, α̂ 7→
∑

µ∈Compd(n)

(τµ1 ⊗ τµ2 ⊗ · · · ⊗ τµd) ◦ TrMatmµ
◦ (ψd,n ◦ %d,n ◦ γ′d,n)(α)

is an 1-variable invariant of oriented classical links. This in turn implies that, for a given oriented link L, we
have [PdAWa, Corollary 4.2]:

(4.8) Td,q(L) = d!
∑
π

q4ν(π)Vq(πL)

where the sum is over all partitions π of the components of L into d (unordered) subsets, Vq(πL) is the
product of the Jones polynomials of the d sublinks of L defined by π and ν(π) is the sum of all linking
numbers of pairs of components that are in distinct sets of π.

Remark 4.17. Note that the sum of linking numbers appearing in [PdAWa, Corollary 4.2] is twice the sum
of linking numbers ν(π), as defined in [CJKL, Theorem B.1] and here.

We then obtain the following closed combinatorial formula for θd,q.

Proposition 4.18. Let L be an oriented link with m components. Then

(4.9) θd,q(L) =

m∑
k=1

(d− 1)(d− 2) · · · (d− k + 1)

k!
(−q − q−1)k−1Tk,q(L)

Proof. Recall that θd,q(L) = (trnd,Z/dZ ◦ %d,n ◦ γ′d,n)(α), where α ∈ Bn is such that α̂ = L. Then, by [PdA,

Proposition 5.5], we have

θd,q(L) =
1

d

m∑
k=1

(
d

k

)
(−q − q−1)k−1Tk,q(L) =

m∑
k=1

(d− 1)!

k!(d− k)!
(−q − q−1)k−1Tk,q(L),

and so (4.9) holds. �

Remark 4.19. Because of property (P2), Formula (4.9) is still valid if we replace the integer d by an indeter-
minate (corresponding to E−1

D ). The standard notation used for this generalised invariant is θ (cf. [GoLa]).

Example 4.20. We will use Formula (4.9) to compute the value of θd,q on the Hopf link with two positive
crossings. The Hopf link has two components, each of them being an unknot, and linking number ln(Hopf) =
1. Formula (4.9) in combination with Equation (4.8) reads:

θd,q(Hopf) = Vq(Hopf) + (d− 1)(−q − q−1)q4ln(Hopf)Vq(Unknot)
2

= −q5 − q + d(−q5 − q3) + q5 + q3 = q3 − q − d(q5 + q3)

since Vq(Unknot) = 1. This coincides with the value that we found in Example 4.9 for ED = 1/d.
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Example 4.21. We will now use Formula (4.9) to compute the value of θd,q on L := LLL(0) of Figure 2.
We will denote by TU1 (respectively TU2) the 2-component link obtained when removing the component
U2 (respectively U1) from L, and by U1,2 the 2-component link obtained when removing the component T
from L. We have used the programming language SAGE [Sage] to compute the Jones polynomials of these
three 2-component links, while it is easy to determine their linking numbers by hand. We have:

(4.10)

Vq(TU1) = −q−3(q10 + q6 + q2 − 1) and ln(TU1) = 2

Vq(TU2) = −q−15(q10 + q6 + q2 − 1) and ln(TU2) = −2

Vq(U
1,2) = q−3(q10 + q6 + q2 − 1)− 2(q5 + q) and ln(U1,2) = 0.

Formula (4.9) in combination with Equation (4.8) reads:

θd,q(L) = Vq(L)+

+(d− 1)(−q − q−1)q4(ln(TU2)+ln(U1,2))Vq(TU1)Vq(U2)+

+(d− 1)(−q − q−1)q4(ln(TU1)+ln(U1,2))Vq(TU2)Vq(U1)+

+(d− 1)(−q − q−1)q4(ln(TU1)+ln(TU2))Vq(U
1,2)Vq(T)+

+(d− 1)(d− 2)(−q − q−1)2q4(ln(TU1)+ln(TU2)+ln(U1,2))Vq(T)Vq(U1)Vq(U2)

Using the fact that Vq(U1) = Vq(U2) = 1, since U1 and U2 are unknots, and replacing the linking numbers
with their values from (4.10), we obtain that θd,q(L) is equal to:

Vq(L)− (d− 1)(q + q−1)(q−8Vq(TU1) + q8Vq(TU2) + Vq(U
1,2)Vq(T)) + (d− 1)(d− 2)(q + q−1)2Vq(T).

Moreover, since T is a left-handed trefoil knot, we have Vq(T) = q−2 + q−6 − q−8. Using also the values for
Vq(TU1), Vq(TU2) and Vq(U

1,2) from (4.10), we calculate:

θd,q(L) = Vq(L)− (d− 1)(q + q−1)(q5 − 3q3 + 2q − 7q−1 + 4q−3 − 6q−5 + 4q−7 − 3q−9 + 2q−11)

+(d− 1)(d− 2)(q + q−1)(q−1 + q−3 + q−5 − q−9)

which in turn is equal to:

Vq(L)− (d− 1)(q+ q−1)q−11
(
q16 − 3q14 + 2q12 − 5q10 + 6q8 − 4q6 + 4q4 − 5q2 + 2− d(q10 + q8 + q6 − q2)

)
.

This coincides with the value that we found in Example 4.16 for ED = 1/d.

Remark 4.22. It is obvious from the examples that, as the number of components becomes larger, the
algebraic definition of θd,q directly from the Markov trace (or traces) on FTLd,n(q) is more efficient compu-
tationally than its combinatorial definition with the use of Formula (4.9).
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