# Blocks and Schur elements for Hecke algebras of exceptional complex reflection groups

#### Maria Chlouveraki

National and Kapodistrian University of Athens

#### **ACA 2025**

Computer Algebra in Group Theory and Representation Theory

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "Sub-action 1. Funding New Researchers – RRF: Basic Research Financing (Horizontal support for all Sciences)\*.

Proposal ID: 015659 | Acronym: SYMATRAL

| Fig. | Fig. | Acronym: SYMATRAL

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of  $\mathrm{GL}(V)$  generated by pseudo-reflections, that is, elements of order  $\geqslant 2$  that fix a hyperplane pointwise.

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of GL(V) generated by *pseudo-reflections*, that is, elements of order  $\geq 2$  that fix a hyperplane pointwise.

### Theorem (Shephard-Todd '54)

Let  $W \subset GL(V)$  be an irreducible complex reflection group (i.e., W acts irreducibly on V). Then one of the following assertions is true:

- $W \cong G(de, e, r)$ , where G(de, e, r) is the group of all  $r \times r$  monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a d-th root of unity.
- $W \cong G_n$  for some n = 4, ..., 37.

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of GL(V) generated by *pseudo-reflections*, that is, elements of order  $\geq 2$  that fix a hyperplane pointwise.

### Theorem (Shephard–Todd '54)

Let  $W \subset GL(V)$  be an irreducible complex reflection group (i.e., W acts irreducibly on V). Then one of the following assertions is true:

- $W \cong G(de, e, r)$ , where G(de, e, r) is the group of all  $r \times r$  monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a d-th root of unity.
- $W \cong G_n$  for some n = 4, ..., 37.

We define the rank of W to be the dimension of V.

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of GL(V) generated by pseudo-reflections, that is, elements of order  $\geq 2$  that fix a hyperplane pointwise.

### Theorem (Shephard-Todd '54)

Let  $W \subset GL(V)$  be an irreducible complex reflection group (i.e., W acts irreducibly on V). Then one of the following assertions is true:

- $W \cong G(de, e, r)$ , where G(de, e, r) is the group of all  $r \times r$  monomial matrices whose non-zero entries are de-th roots of unity, while the product of all non-zero entries is a d-th root of unity.
- $W \cong G_n$  for some n = 4, ..., 37.

We define the rank of W to be the dimension of V.

**Remark:** The groups  $G_4, G_5, \ldots, G_{22}$  are of rank 2.



$$G_4 = \langle s, t \mid sts = tst, s^3 = 1, t^3 = 1 \rangle$$

$$G_4 = \langle s, t \mid sts = tst, s^3 = 1, t^3 = 1 \rangle$$

$$\mathcal{H}(G_4) = \left\langle T_s, T_t \middle| \begin{array}{c} T_s T_t T_s = T_t T_s T_t, \\ \\ T_s^3 = a T_s^2 + b T_s + c, T_t^3 = a T_t^2 + b T_t + c \end{array} \right\rangle$$

over  $R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}].$ 

$$G_4 = \langle s, t \mid sts = tst, s^3 = 1, t^3 = 1 \rangle$$

$$\mathcal{H}(G_4) = \left\langle T_s, T_t \middle| \begin{array}{c} T_s T_t T_s = T_t T_s T_t, \\ \\ T_s^3 = a T_s^2 + b T_s + c, T_t^3 = a T_t^2 + b T_t + c \end{array} \right\rangle$$

over  $R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}].$ 

$$G_7 = \left\langle s, t, u \mid stu = tus = ust, s^2 = 1, t^3 = 1, u^3 = 1 \right\rangle$$

$$G_4 = \langle s, t \mid sts = tst, s^3 = 1, t^3 = 1 \rangle$$

$$\mathcal{H}(G_4) = \left\langle T_s, T_t \middle| \begin{array}{c} T_s T_t T_s = T_t T_s T_t, \\ \\ T_s^3 = a T_s^2 + b T_s + c, T_t^3 = a T_t^2 + b T_t + c \end{array} \right\rangle$$

over  $R_{G_4}=\mathbb{Z}[a,b,c^{\pm 1}].$ 

$$\textit{G}_{7}=\left\langle \textit{s},\;\textit{t},\;\textit{u}\;\;\middle|\;\;\textit{stu}=\textit{tus}=\textit{ust},\;\;\textit{s}^{2}=1,\;\;\textit{t}^{3}=1,\;\;\textit{u}^{3}=1\right\rangle$$

$$\mathcal{H}(G_7) = \left\langle T_s, \ T_t, \ T_u \ \middle| \ \begin{array}{c} T_s T_t T_u = T_t T_u T_s = T_u T_s T_t, \ T_s^2 = a T_s + b, \\ T_t^3 = c T_t^2 + d T_t + e, \ T_u^3 = f T_u^2 + g T_u + h \end{array} \right\rangle$$

over  $R_{G_7} = \mathbb{Z}[a, b^{\pm 1}, c, d, e^{\pm 1}, f, g, h^{\pm 1}].$ 

$$G_4 = \left\langle s, t \mid sts = tst, \ s^3 = 1, \ t^3 = 1 \right\rangle$$

$$\mathcal{H}(G_4) = \left\langle T_s, T_t \mid T_s = T_t T_s T_t, \right.$$

$$T_s^3 = a T_s^2 + b T_s + c, \ T_t^3 = a T_t^2 + b T_t + c \right\rangle$$
over  $R_{G_4} = \mathbb{Z}[a, b, c^{\pm 1}].$ 

$$B(G_4) = \left\langle s, t \mid sts = tst \right\rangle$$

$$G_{7} = \left\langle s, t, u \mid stu = tus = ust, \ s^{2} = 1, \ t^{3} = 1, \ u^{3} = 1 \right\rangle$$

$$\mathcal{H}(G_{7}) = \left\langle T_{s}, T_{t}, T_{u} \mid T_{s} = T_{t}T_{u}T_{s} = T_{u}T_{s}T_{t}, \ T_{s}^{2} = aT_{s} + b, \right\rangle$$

$$T_{s}^{3} = cT_{t}^{2} + dT_{t} + e, \ T_{u}^{3} = fT_{u}^{2} + gT_{u} + h$$
over  $R_{G_{7}} = \mathbb{Z}[a, b^{\pm 1}, c, d, e^{\pm 1}, f, g, h^{\pm 1}].$   $B(G_{7}) = \left\langle s, t, u \mid stu = tus = ust \right\rangle$ 

The Broué-Malle-Rouquier freeness conjecture '98

### The Broué-Malle-Rouquier freeness conjecture '98

#### Theorem

The algebra  $\mathcal{H}(W)$  has an  $R_W$ -basis  $\{T_w \mid w \in W\}$ .

# The Broué-Malle-Rouquier freeness conjecture '98

#### Theorem

The algebra  $\mathcal{H}(W)$  has an  $R_W$ -basis  $\{T_w \mid w \in W\}$ .

#### It has been proved for :

- the real reflection groups by Bourbaki;
- the complex reflection groups G(de, e, r) by Ariki-Koike, Broué-Malle, Ariki;
- the group G<sub>4</sub> by Broué–Malle, Funar, Marin, Chavli;
- the groups  $G_5, \ldots, G_{16}$  by Chavli ( $G_{12}$  also by Marin–Pfeiffer);
- the groups  $G_{17}$ ,  $G_{18}$ ,  $G_{19}$  by Tsuchioka;
- the groups  $G_{20}$ ,  $G_{21}$  by Marin;
- the groups  $G_{22}, \ldots, G_{37}$  by Marin, Marin-Pfeiffer.

#### Conjecture

There exists a linear map  $\tau : \mathcal{H}(W) \to R_W$  that satisfies:

**1** au is a symmetrising trace, that is, the matrix  $A := (\tau(T_w T_{w'})_{w,w' \in W})$  is symmetric and invertible over  $R_W$ .

#### Conjecture

There exists a linear map  $\tau : \mathcal{H}(W) \to R_W$  that satisfies:

- **1** au is a symmetrising trace, that is, the matrix  $A := (\tau(T_w T_{w'})_{w,w' \in W})$  is symmetric and invertible over  $R_W$ .
- ② When  $\mathcal{H}(W)$  specialises to  $\mathbb{Z}[W]$ ,  $\boldsymbol{\tau}(w) = \delta_{1w}$  for all  $w \in W$ .

#### Conjecture

There exists a linear map  $\tau : \mathcal{H}(W) \to R_W$  that satisfies:

- **1** au is a symmetrising trace, that is, the matrix  $A := (\tau(T_w T_{w'})_{w,w' \in W})$  is symmetric and invertible over  $R_W$ .
- ② When  $\mathcal{H}(W)$  specialises to  $\mathbb{Z}[W]$ ,  $\tau(w) = \delta_{1w}$  for all  $w \in W$ .
- $\odot$  au satisfies an extra condition, which makes it unique.

#### Conjecture

There exists a linear map  $\tau : \mathcal{H}(W) \to R_W$  that satisfies:

- **1** au is a symmetrising trace, that is, the matrix  $A := (\tau(T_w T_{w'})_{w,w' \in W})$  is symmetric and invertible over  $R_W$ .
- ② When  $\mathcal{H}(W)$  specialises to  $\mathbb{Z}[W]$ ,  $\tau(w) = \delta_{1w}$  for all  $w \in W$ .
- $oldsymbol{\circ}$  au satisfies an extra condition, which makes it unique.

#### It has been proved for:

- the real reflection groups by Bourbaki;
- the complex reflection groups G(de, e, r) by Bremke–Malle, Malle–Mathas;
- the groups  $G_4$ ,  $G_{12}$ ,  $G_{22}$ ,  $G_{24}$  by Malle–Michel ( $G_4$  also by Marin–Wagner);
- the groups  $G_4$ ,  $G_5$ ,  $G_6$ ,  $G_7$ ,  $G_8$  by Boura–Chavli–C.–Karvounis;
- the group  $G_{13}$  by Boura–Chavli–C.;
- the groups  $G_4$ ,  $G_5$ , ...,  $G_{15}$  by Chavli–Pfeiffer.



**STEP 1:** Take a basis  $\mathcal{B} = \{ T_w \mid w \in W \}$  with  $T_1 = 1$ .

**STEP 1:** Take a basis  $\mathcal{B} = \{ T_w \mid w \in W \}$  with  $T_1 = 1$ .

**STEP 2:** Define a linear map  $\tau : \mathcal{H}(W) \to R_W, \ T_w \mapsto \delta_{1w}$  for all  $w \in W$ .

**STEP 1:** Take a basis  $\mathcal{B} = \{ T_w \mid w \in W \}$  with  $T_1 = 1$ .

**STEP 2:** Define a linear map  $\tau : \mathcal{H}(W) \to R_W, \ T_w \mapsto \delta_{1w}$  for all  $w \in W$ .

If  $h = \sum_{w \in W} \lambda_w T_w \in \mathcal{H}(W)$ , then  $\tau(h) = \lambda_1$ .

**STEP 1:** Take a basis  $\mathcal{B} = \{ T_w \mid w \in W \}$  with  $T_1 = 1$ .

**STEP 2:** Define a linear map  $\tau : \mathcal{H}(W) \to R_W, \ T_w \mapsto \delta_{1w}$  for all  $w \in W$ .

If  $h = \sum_{w \in W} \lambda_w T_w \in \mathcal{H}(W)$ , then  $\tau(h) = \lambda_1$ .

**STEP 3:** Calculate the matrix  $A = (\tau(T_w T_{w'})_{w,w' \in W})$ .

**STEP 1:** Take a basis  $\mathcal{B} = \{ T_w \mid w \in W \}$  with  $T_1 = 1$ .

**STEP 2:** Define a linear map  $\tau : \mathcal{H}(W) \to R_W, T_w \mapsto \delta_{1w}$  for all  $w \in W$ .

If 
$$h = \sum_{w \in W} \lambda_w T_w \in \mathcal{H}(W)$$
, then  $\tau(h) = \lambda_1$ .

**STEP 3:** Calculate the matrix  $A = (\tau(T_w T_{w'})_{w,w' \in W})$ .

**STEP 4:** Check whether A is symmetric and invertible over  $R_W$ . If yes, then  $\tau$  satisfies the first condition of the BMM conjecture. If not, go back to STEP 1 and modify  $\mathcal{B}$ .

**STEP 1:** Take a basis  $\mathcal{B} = \{ T_w \mid w \in W \}$  with  $T_1 = 1$ .

**STEP 2:** Define a linear map  $\tau : \mathcal{H}(W) \to R_W, \ T_w \mapsto \delta_{1w}$  for all  $w \in W$ .

If 
$$h = \sum_{w \in W} \lambda_w T_w \in \mathcal{H}(W)$$
, then  $\tau(h) = \lambda_1$ .

**STEP 3:** Calculate the matrix  $A = (\tau(T_w T_{w'})_{w,w' \in W})$ .

**STEP 4:** Check whether A is symmetric and invertible over  $R_W$ . If yes, then  $\tau$  satisfies the first condition of the BMM conjecture. If not, go back to STEP 1 and modify  $\mathcal{B}$ .

STEP 5: Check that the extra third condition holds.

**STEP 1:** Take a basis  $\mathcal{B} = \{ T_w \mid w \in W \}$  with  $T_1 = 1$ .

**STEP 2:** Define a linear map  $\tau : \mathcal{H}(W) \to R_W, T_w \mapsto \delta_{1w}$  for all  $w \in W$ .

If 
$$h = \sum_{w \in W} \lambda_w T_w \in \mathcal{H}(W)$$
, then  $\tau(h) = \lambda_1$ .

**STEP 3:** Calculate the matrix  $A = (\tau(T_w T_{w'})_{w,w' \in W})$ .

**STEP 4:** Check whether A is symmetric and invertible over  $R_W$ . If yes, then  $\tau$  satisfies the first condition of the BMM conjecture. If not, go back to STEP 1 and modify  $\mathcal{B}$ .

**STEP 5:** Check that the extra third condition holds.

#### **Difficulties**

- Not any basis will work.
- Step 3 is easier said than done!

We have

$$au = \sum_{\chi \in \operatorname{Irr}(\mathcal{H}(W))} \frac{1}{s_{\chi}} \chi$$

for some unique  $s_{\chi} \in R_W$ . These are the Schur elements of  $\mathcal{H}(W)$ .

We have

$$\tau = \sum_{\chi \in \operatorname{Irr}(\mathcal{H}(W))} \frac{1}{s_{\chi}} \chi$$

for some unique  $s_{\chi} \in R_W$ . These are the Schur elements of  $\mathcal{H}(W)$ .

The Schur elements have been calculated for all complex reflection groups!

We have

$$au = \sum_{\chi \in \operatorname{Irr}(\mathcal{H}(W))} \frac{1}{\mathsf{s}_{\chi}} \chi$$

for some unique  $s_{\chi} \in R_W$ . These are the Schur elements of  $\mathcal{H}(W)$ .

The Schur elements have been calculated for all complex reflection groups!

### Theorem (C.'07)

The Schur elements are products of cyclotomic polynomials evaluated on *primitive* monomials in  $R_W$ .

We have

$$au = \sum_{\chi \in \operatorname{Irr}(\mathcal{H}(W))} \frac{1}{s_{\chi}} \chi$$

for some unique  $s_{\chi} \in R_W$ . These are the Schur elements of  $\mathcal{H}(W)$ .

The Schur elements have been calculated for all complex reflection groups!

### Theorem (C.'07)

The Schur elements are products of cyclotomic polynomials evaluated on *primitive* monomials in  $R_W$ .

#### GAP3 - Chevie package:

- SchurElements(H);
- PactorizedSchurElements(H);

Let  $R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$ 

Let 
$$R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$$

Let 
$$\varphi: R_W \to \mathbb{Z}[q, q^{-1}]$$
,  $x_i \mapsto q^{m_i}$  where  $m_i \in \mathbb{Z}$ .

Let  $R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$ 

Let  $\varphi: R_W \to \mathbb{Z}[q, q^{-1}]$ ,  $x_i \mapsto q^{m_i}$  where  $m_i \in \mathbb{Z}$ . Then  $\mathcal{H}_{\varphi}(W)$  is a cyclotomic Hecke algebra of W.

Let 
$$R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$$

Let  $\varphi: R_W \to \mathbb{Z}[q, q^{-1}]$ ,  $x_i \mapsto q^{m_i}$  where  $m_i \in \mathbb{Z}$ . Then  $\mathcal{H}_{\varphi}(W)$  is a cyclotomic Hecke algebra of W. Its Schur elements are  $S_{\chi} := \varphi(s_{\chi})$ .

Let  $R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$ 

Let  $\varphi: R_W \to \mathbb{Z}[q, q^{-1}]$ ,  $x_i \mapsto q^{m_i}$  where  $m_i \in \mathbb{Z}$ . Then  $\mathcal{H}_{\varphi}(W)$  is a cyclotomic Hecke algebra of W. Its Schur elements are  $S_{\chi} := \varphi(s_{\chi})$ .

Let  $\theta: \mathbb{Z}[q, q^{-1}] \to \mathbb{C}$ ,  $q \mapsto \eta \in \mathbb{C}^*$ .

Let  $R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$ 

Let  $\varphi: R_W \to \mathbb{Z}[q, q^{-1}]$ ,  $x_i \mapsto q^{m_i}$  where  $m_i \in \mathbb{Z}$ . Then  $\mathcal{H}_{\varphi}(W)$  is a cyclotomic Hecke algebra of W. Its Schur elements are  $S_{\chi} := \varphi(s_{\chi})$ .

Let  $\theta: \mathbb{Z}[q,q^{-1}] \to \mathbb{C}$ ,  $q \mapsto \eta \in \mathbb{C}^*$ . Then  $\mathcal{H}_{\theta}(W)$  is a specialised Hecke algebra of W.

Let  $R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$ 

Let  $\varphi: R_W \to \mathbb{Z}[q, q^{-1}]$ ,  $x_i \mapsto q^{m_i}$  where  $m_i \in \mathbb{Z}$ . Then  $\mathcal{H}_{\varphi}(W)$  is a cyclotomic Hecke algebra of W. Its Schur elements are  $S_{\chi} := \varphi(s_{\chi})$ .

Let  $\theta: \mathbb{Z}[q,q^{-1}] \to \mathbb{C}$ ,  $q \mapsto \eta \in \mathbb{C}^*$ . Then  $\mathcal{H}_{\theta}(W)$  is a specialised Hecke algebra of W. The defect of  $\chi \in \operatorname{Irr}(W)$  is  $d_{\chi}$ =multiplicity of  $\eta$  as a root of  $S_{\chi}$ .

Let 
$$R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$$

Let  $\varphi: R_W \to \mathbb{Z}[q, q^{-1}]$ ,  $x_i \mapsto q^{m_i}$  where  $m_i \in \mathbb{Z}$ . Then  $\mathcal{H}_{\varphi}(W)$  is a cyclotomic Hecke algebra of W. Its Schur elements are  $S_{\chi} := \varphi(s_{\chi})$ .

Let  $\theta: \mathbb{Z}[q,q^{-1}] \to \mathbb{C}$ ,  $q \mapsto \eta \in \mathbb{C}^*$ . Then  $\mathcal{H}_{\theta}(W)$  is a specialised Hecke algebra of W. The defect of  $\chi \in \operatorname{Irr}(W)$  is  $d_{\chi}$ =multiplicity of  $\eta$  as a root of  $S_{\chi}$ .

#### Theorem (Geck-Pfeiffer '00)

The algebra  $\mathcal{H}_{\theta}(W)$  is semisimple if and only if  $\theta(S_{\chi}) \neq 0$  for all  $\chi$ .



Let 
$$R_W = \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm}].$$

Let  $\varphi: R_W \to \mathbb{Z}[q, q^{-1}]$ ,  $x_i \mapsto q^{m_i}$  where  $m_i \in \mathbb{Z}$ . Then  $\mathcal{H}_{\varphi}(W)$  is a cyclotomic Hecke algebra of W. Its Schur elements are  $S_{\chi} := \varphi(s_{\chi})$ .

Let  $\theta: \mathbb{Z}[q,q^{-1}] \to \mathbb{C}$ ,  $q \mapsto \eta \in \mathbb{C}^*$ . Then  $\mathcal{H}_{\theta}(W)$  is a specialised Hecke algebra of W. The defect of  $\chi \in \operatorname{Irr}(W)$  is  $d_{\chi}$ =multiplicity of  $\eta$  as a root of  $S_{\chi}$ .

#### Theorem (Geck-Pfeiffer '00)

The algebra  $\mathcal{H}_{\theta}(W)$  is semisimple if and only if  $\theta(S_{\chi}) \neq 0$  for all  $\chi$ .

$$D_{\theta} = \begin{pmatrix} B_1 & 0 & \cdots & 0 \\ 0 & B_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & B_n \end{pmatrix} \operatorname{Irr}(W)$$

$$\operatorname{Irr}(\mathcal{H}_{\theta}(W))$$

# The defect conjecture (Geck '92, C.-Jacon '23)

#### Conjecture

If  $\chi,\psi$  belong to the same block, then  $\emph{d}_{\chi}=\emph{d}_{\psi}.$ 

# The defect conjecture (Geck '92, C.-Jacon '23)

#### Conjecture

If  $\chi, \psi$  belong to the same block, then  $d_{\chi} = d_{\psi}$ .

It has been proved for:

- Weyl groups in the equal parameter case by Geck;
- H<sub>3</sub> and H<sub>4</sub> by Geck-Pfeiffer;
- the complex reflection groups G(de, e, r) by C.-Jacon;
- all exceptional complex reflection groups for which the blocks are known.

# The defect conjecture (Geck '92, C.-Jacon '23)

#### Conjecture

If  $\chi,\psi$  belong to the same block, then  $\emph{d}_{\chi}=\emph{d}_{\psi}.$ 

It has been proved for :

- Weyl groups in the equal parameter case by Geck;
- $H_3$  and  $H_4$  by Geck-Pfeiffer;
- the complex reflection groups G(de, e, r) by C.-Jacon;
- all exceptional complex reflection groups for which the blocks are known.

#### Blocks for exceptional complex reflection groups are known

- for real reflection groups by Geck-Pfeiffer;
- ullet for  $G_4$ ,  $G_5$ ,  $G_8$ ,  $G_9$ ,  $G_{10}$ ,  $G_{12}$ ,  $G_{16}$ ,  $G_{20}$ ,  $G_{22}$  by C.-Miyachi;
- for  $G_4$ ,  $G_8$ ,  $G_{16}$  by Chavli;
- for  $G_{24}$ ,  $G_{25}$ ,  $G_{26}$ ,  $G_{31}$ ,  $G_{32}$ ,  $G_{33}$  by C.-Malle.

#### Theorem (Geck-Pfeiffer '00)

### Theorem (Geck-Pfeiffer '00)

We have that  $\chi, \psi$  are in the same block if and only if  $\theta(\omega_{\chi}(z)) = \theta(\omega_{\psi}(z))$  for all  $z \in Z(\mathcal{H}(W))$ , where  $\omega_{\chi}(z) = \chi(z)/\chi(1)$ .

**1** Let  $B(W) = \langle \beta \rangle$ . If  $\theta(\omega_{\chi}(\beta)) \neq \theta(\omega_{\psi}(\beta))$ , then  $\chi, \psi$  are not in the same block.

#### Theorem (Geck-Pfeiffer '00)

- **1** Let  $B(W) = \langle \beta \rangle$ . If  $\theta(\omega_{\chi}(\beta)) \neq \theta(\omega_{\psi}(\beta))$ , then  $\chi, \psi$  are not in the same block.
- ② A character  $\chi$  is alone in its block if and only if  $\theta(S_{\chi}) \neq 0$ .

### Theorem (Geck-Pfeiffer '00)

- Let  $B(W) = \langle \beta \rangle$ . If  $\theta(\omega_{\chi}(\beta)) \neq \theta(\omega_{\psi}(\beta))$ , then  $\chi, \psi$  are not in the same block.
- ② A character  $\chi$  is alone in its block if and only if  $\theta(S_{\chi}) \neq 0$ .
- Any representation of dimension 1 is irreducible. A representation of dimension 2 is irreducible, unless it has a 1-dimensional subrepresentation. A representation of dimension 3 is irreducible unless it or its transpose has a 1-dimensional subrepresentation.

### Theorem (Geck-Pfeiffer '00)

- Let  $B(W) = \langle \beta \rangle$ . If  $\theta(\omega_{\chi}(\beta)) \neq \theta(\omega_{\psi}(\beta))$ , then  $\chi, \psi$  are not in the same block.
- ② A character  $\chi$  is alone in its block if and only if  $\theta(S_\chi) \neq 0$ .
- Any representation of dimension 1 is irreducible. A representation of dimension 2 is irreducible, unless it has a 1-dimensional subrepresentation. A representation of dimension 3 is irreducible unless it or its transpose has a 1-dimensional subrepresentation.
- **4** Let  $\phi \in \operatorname{Irr}(\mathcal{H}_{\theta}(W))$  and let P(q) be a polynomial that is divisible by  $S_{\chi}$  for all  $\chi$  such that  $d_{\chi,\phi} \neq 0$ . Then

$$\sum_{x \in \operatorname{Irr}(W)} d_{\chi,\phi} \cdot heta(P(q)/S_\chi) = 0.$$

#### Conjecture

For any generic finite reductive group G and integers d, e > 0, the intersection of a d-Harish-Chandra series and an e-Harish-Chandra series of G is parametrised by a union of blocks of the Hecke algebra of the d-cuspidal pair at an e-th root of unity, and similarly for the Hecke algebra of the e-cuspidal pair at a d-th root of unity. These parametrisations match the blocks on the two sides.

#### Conjecture

For any generic finite reductive group G and integers d, e > 0, the intersection of a d-Harish-Chandra series and an e-Harish-Chandra series of G is parametrised by a union of blocks of the Hecke algebra of the d-cuspidal pair at an e-th root of unity, and similarly for the Hecke algebra of the e-cuspidal pair at a d-th root of unity. These parametrisations match the blocks on the two sides.

This claim has been verified for groups of type  $\mathrm{GL}_n$  when d,e are coprime by Trinh and Xue, who have also checked some numerical consequences for exceptional type groups.

#### Conjecture

For any generic finite reductive group G and integers d,e>0, the intersection of a d-Harish-Chandra series and an e-Harish-Chandra series of G is parametrised by a union of blocks of the Hecke algebra of the d-cuspidal pair at an e-th root of unity, and similarly for the Hecke algebra of the e-cuspidal pair at a d-th root of unity. These parametrisations match the blocks on the two sides.

This claim has been verified for groups of type  $\mathrm{GL}_n$  when d,e are coprime by Trinh and Xue, who have also checked some numerical consequences for exceptional type groups.

#### Theorem (C.-Malle '25)

• The Trinh-Xue conjecture holds for all finite reductive groups of exceptional type, except possibly for type  $E_8$  when  $d \in \{3,4,6\}$ .

#### Conjecture

For any generic finite reductive group G and integers d,e>0, the intersection of a d-Harish-Chandra series and an e-Harish-Chandra series of G is parametrised by a union of blocks of the Hecke algebra of the d-cuspidal pair at an e-th root of unity, and similarly for the Hecke algebra of the e-cuspidal pair at a d-th root of unity. These parametrisations match the blocks on the two sides.

This claim has been verified for groups of type  $\mathrm{GL}_n$  when d,e are coprime by Trinh and Xue, who have also checked some numerical consequences for exceptional type groups.

### Theorem (C.-Malle '25)

- The Trinh-Xue conjecture holds for all finite reductive groups of exceptional type, except possibly for type  $E_8$  when  $d \in \{3,4,6\}$ .
- A generalised conjecture holds for the non-crystallographic Coxeter groups as well as for the "spetsial" complex reflection groups  $G_4$ ,  $G_6$ ,  $G_8$  and  $G_{24}$ .