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Blocks

Let O be a Noetherian and integrally closed domain with field of fractions F .

Let A be an O-algebra, free and finitely generated as an O-module.

An idempotent of A is an element e ∈ A such that e2 = e. Two idempotents
e1, e2 are orthogonal, if e1e2 = e2e1 = 0. An idempotent e is primitive, if e 6= 0
and e can not be expressed as the sum of two non-zero orthogonal idempotents.

The blocks of A are the primitive idempotents of the center ZA of A.

Suppose that there exists a finite Galois extension K of F such that the algebra
KA := K ⊗O A is split semisimple.
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Then there exists a bijection

Irr(KA) ↔ Bl(KA)
χ 7→ eχ

Proposition

There exists a unique partition Bl(A) of Irr(KA) which is minimal
(i.e., the finest) with respect to the property:

for all B ∈ Bl(A), eB :=
∑
χ∈B

eχ ∈ A.

In particular, the set {eB}B∈Bl(A) is the set of all the blocks of A.

If χ ∈ B for B ∈ Bl(A), we say that “χ belongs to the block eB”.
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Symmetric algebras

We say that a linear form t : A→ O is a symmetrizing form on A and that A is a
symmetric algebra if

t is a trace function, i.e., t(aa′) = t(a′a) for all a, a′ ∈ A, and

the map
t̂ : A → HomO(A,O)

a 7→ (x 7→ t(ax))

is an isomorphism of A-bimodules.

Lemma
A trace function t : A→ O is symmetrizing if and only if there exist two bases
(e1, . . . , en) and (e′1, . . . , e

′
n) of A over O such that t(eie

′
j ) = δij .
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Theorem (Geck)

Suppose that KA is a split semisimple algebra like before.

1 We have

t =
∑

χ∈Irr(KA)

1

sχ
χ,

where sχ is the Schur element of χ with respect to t. The Schur element sχ
belongs to the integral closure of O in K .

2 For all χ ∈ Irr(KA), we have eχ = 1
sχ

∑n
i=1 χ(ei )e

′
i .

Corollary

The blocks of A are the non-empty subsets B of Irr(KA) which are minimal with
respect to the property: ∑

χ∈B

χ(a)

sχ
∈ O, for all a ∈ A.
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Example: If O = Z and A = ZG (G a finite group), we can define the following
symmetrizing form (“canonical symmetrizing form”) on A

t : Z[G ]→ Z,
∑
g∈G

agg 7→ a1.

The set (g)g∈G is a basis of A over O. Its dual basis is (g−1)g∈G .

For all χ ∈ Irr(G ), we have

sχ =
|G |
χ(1)

.
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Real reflection groups

Let V be a finite dimensional Euclidean vector space.

A reflection is an element of GL(V ) which maps a vector of V to its opposite,
while fixing the hyperplane orthogonal to it.

A finite subgroup of GL(V ) generated by reflections is a real reflection group.

Theorem
A finite group W is a real reflection group if and only if W is a Coxeter group.
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Hecke algebras

Let (W ,S) be a finite Coxeter system. Then W has a presentation of the form:

W = 〈 S | ststst . . .︸ ︷︷ ︸
m(s,t)

= tststs . . .︸ ︷︷ ︸
m(s,t)

, s2 = 1, ∀s, t ∈ S 〉

If m(s, t) ∈ {2, 3, 4, 6} for all s 6= t ∈ S , then W is a Weyl group.

The generic Hecke algebra H(W ) of W is defined over the Laurent polynomial
ring Z[u,u−1], where u = (us,0, us,1)s∈S is a set of indeterminates, and has a
presentation of the form:

H(W ) = 〈 (Ts)s∈S | TsTtTs . . .︸ ︷︷ ︸
m(s,t)

= TtTsTt . . .︸ ︷︷ ︸
m(s,t)

, (Ts−u2
s,0)(Ts+u2

s,1) = 0, ∀s, t ∈ S 〉

We also ask that us,j = ut,j whenever s and t are conjugate in W .
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Examples:

G2 =
〈

s, t | ststst = tststs, s2 = t2 = 1
〉

H(G2) =

〈
Ts ,Tt

∣∣∣∣ TsTtTsTtTsTt = TtTsTtTsTtTs ,
(Ts − u2

0)(Ts + u2
1) = (Tt − v2

0 )(Tt + v2
1 ) = 0

〉

Sn =

〈
s1, s2, . . . , sn−1

∣∣∣∣∣∣
si si+1si = si+1si si+1,
si sj = sjsi if |i − j | > 1,
s2
i = 1

〉

H(Sn) =

〈
T1,T2, . . . ,Tn−1

∣∣∣∣∣∣
TiTi+1Ti = Ti+1TiTi+1,
TiTj = TjTi if |i − j | > 1,
(Ti − u2

0)(Ti + u2
1) = 0

〉
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We have seen that H(W ) is a free Z[u,u−1]-module of rank |W | (with standard
basis (Tw )w∈W ).

The linear map t : H(W )→ Z[u,u−1] defined by

t(T1) = 1 and t(Tw ) = 0 for all w ∈W \ {1}

is a canonical symmetrizing form on H(W ).

Moreover, the algebra Q(u)H(W ) is split semisimple. By “Tits’ deformation
theorem”, the specialization us,j 7→ 1 induces a bijection

IrrQ(u)H(W )) ↔ Irr(W )
χu 7→ χ

We have

t =
∑

χ∈Irr(W )

1

sχu

χu.
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Let q be an indeterminate. A cyclotomic specialization of H(W ) is a Z-algebra
morphism ϕ : Z[u,u−1]→ Z[q, q−1] of the form:

ϕ : us,j 7→ qns,j , where ns,j ∈ Z for all s and j .

The corresponding cyclotomic Hecke algebra Hϕ is the Z[q, q−1]-algebra
obtained as the specialization of the H(W ) via the morphism ϕ. The
specialization tϕ of t via ϕ is a symmetrizing form on Hϕ.

Example: The classical Iwahori-Hecke algebra of W is the algebra obtained via

us,0 7→ q, us,1 7→ 1, ∀s ∈ S

By “Tits’ deformation theorem”, we obtain that the specialization us,j 7→ 1
induces the following bijections:

Irr(Q(u)H(W )) ↔ Irr(Q(q)Hϕ) ↔ Irr(W )
χu 7→ χϕ 7→ χ

sχu 7→ sχϕ 7→ |W |/χ(1)
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Families of characters and Rouquier blocks

1 The families of characters of a Weyl group W , defined by Lusztig, are a
partition of the set of irreducible characters of W which plays a key-role in
the organization of the families of unipotent characters of the corresponfing
finite reductive group. (cf. [Lusztig, 1984]).

2 The families of characters are defined with the help of the Kazhdan-Lusztig
basis of the Iwahori-Hecke algebra of W . In fact, the families are determined
by the two-sided cells of W . As a consequence, the definition of families can
be applied to all finite Coxeter groups.

3 More recent results of Gyoja (1996) and Rouquier (1999) have given us a
substitute for the definition of the familles. In particular, Rouquier has
shown that the families of characters of the group W coincide with the
blocks of the classical Iwahori-Hecke algebra of W over a suitable coefficient
ring, the Rouquier ring.
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The ring

RQ(q) := Z[q, q−1, (qn − 1)−1
n≥1]

is the Rouquier ring of Q(q).

Let ϕ be a cyclotomic specialization of H(W ). The Rouquier blocks of the
cyclotomic Hecke algebra Hϕ are the blocks of the algebra RQ(q)Hϕ,
i.e., the non-empty subsets B of Irr(W ) which are minimal with respect to the
property: ∑

χ∈B

χϕ(h)

sχϕ
∈ RQ(q), for all h ∈ Hϕ.
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Theorem

The Schur element sχu of χu ∈ Irr(Q(u)H(W )) is an element of Z[u,u−1]
of the form:

sχu = ξχNχ
∏
i∈Iχ

Ψχ,i (Mχ,i ),

where

1 ξχ ∈ Z, Nχ is a monomial in Z[u,u−1] and Iχ is an index set,

2 (Ψχ,i )i∈Iχ is a family of Q-cyclotomic polynomials,

3 (Mχ,i )i∈Iχ is a family of degree zero primitive monomials in Z[u,u−1],

i.e., if Mχ,i =
∏

s,j u
as,j

s,j , then gcd(as,j) = 1 and
∑

s,j as,j = 0.

Moreover, the monomials (Mχ,i )i∈Iχ are unique up to inversion.

The Schur element sχϕ of χϕ ∈ Irr(Q(q)Hϕ) is of the form:

sχϕ = ψχϕqaχϕ
∏

Φ∈CQ

Φ(q),

where ψχ,ϕ, aχ,ϕ ∈ Z and CQ is a family of Q-cyclotomic polynomials.
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Determination of the Rouquier blocks

A primitive monomial M =
∏

s,j u
as,j

s,j is essential for W if there exist an

irreducible character χ ∈ Irr(W ) and a Q-cyclotomic polynomial Ψ such that

1 Ψ(M) divides sχu ,

2 Ψ(1) /∈ Z×.

If ϕ : us,j 7→ qns,j is a cyclotomic specialization, then we have

φ(M) = 1⇔
∑
s,j

as,jms,j = 0.

The hyperplane
∑

s,j as,j ts,j = 0 is an essential hyperplane for W .
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If ϕ∅ : us,j 7→ qns,j is a cyclotomic specialization such that the integers ns,j

belong to no essential hyperplane for W , then the Rouquier blocks of Hϕ∅
are called Rouquier blocks associated with no essential hyperplane.

If ϕH : us,j 7→ qns,j is a cyclotomic specialization such that the integers ns,j

belong to a unique essential hyperplane H, then the Rouquier blocks of HϕH

are called Rouquier blocks associated with the essential hyperplane H.

Theorem (C.)

Let ϕ : us,j 7→ qns,j be a cyclotomic specialization of H(W ). The Rouquier blocks
of Hϕ are:

1 unions of the Rouquier blocks associated with the essential hyperplanes to
which the integers ns,j belong,

2 minimal with respect to property 1.
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Examples:

H(G2) =

〈
Ts ,Tt

∣∣∣∣ TsTtTsTtTsTt = TtTsTtTsTtTs ,
(Ts − u2

0)(Ts + u2
1) = (Tt − v2

0 )(Tt + v2
1 ) = 0

〉

We denote the characters of G2 by: χ1,0, χ1,6, χ1,3′ , χ1,3′′ , χ2,1, χ2,2.

Schur elements of G2 (essential in green):

s1 = Φ4(u0u
−1
1 ) · Φ4(v0v

−1
1 ) · Φ3(u0u

−1
1 v0v

−1
1 ) · Φ6(u0u

−1
1 v0v

−1
1 )

s2 = 2 · u2
1u−2

0 · Φ3(u0u
−1
1 v0v

−1
1 ) · Φ6(u0u

−1
1 v−1

0 v1)

Let ϕ : u0 7→ qm0 , u1 7→ qm1 , v0 7→ qn0 , v1 7→ qn1 be a cyclotomic specialization.

The essential hyperplanes for G2 are:

M0 = M1, N0 = N1, M0 −M1 = N0 − N1, M0 −M1 = N1 − N0.
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Essential Hyperplane H BRH(G2)
∅ (χ1,0), (χ1,6), (χ1,3′), (χ1,3′′), (χ2,1, χ2,2)

M0 = M1 (χ1,0, χ1,3′), (χ1,6, χ1,3′′), (χ2,1, χ2,2),
N0 = N1 (χ1,0, χ1,3′′), (χ1,6, χ1,3′), (χ2,1, χ2,2),

M0 −M1 = N1 − N0 (χ1,3′), (χ1,3′′), (χ1,0, χ1,6, χ2,1, χ2,2)
M0 −M1 = N0 − N1 (χ1,0), (χ1,6), (χ1,3′ , χ1,3′′ , χ2,1, χ2,2)

Let us take m0 := 1, m1 := 0, n0 := 1 and n1 := 0.

These integers belong only to
the essential hyperplane M0 −M1 = N0 − N1. Therefore, the Rouquier blocks of
H(G2)ϕ are:

(χ1,0), (χ1,6), (χ1,3′ , χ1,3′′ , χ2,1, χ2,2).
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H(Sn) =

〈
T1,T2, . . . ,Tn−1

∣∣∣∣∣∣
TiTi+1Ti = Ti+1TiTi+1,
TiTj = TjTi if |i − j | > 1,
(Ti − u2

0)(Ti + u2
1) = 0

〉

Let ϕ : u0 7→ qm0 , u1 7→ qm1 be a cyclotomic specialization of H(Sn).

The hyperplane M0 = M1 is the unique essential hyperplane for Sn.

Essential Hyperplane H BRH(Sn)
∅ All characters alone

M0 = M1 All characters together
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Complex reflection groups

Let V be a finite dimensional vector space over C.

A pseudo-reflection is an element of GL(V ) of finite order which fixes a
hyperplane pointwise.

A finite subgroup of GL(V ) generated by pseudo-reflections is a complex
reflection group.

Theorem (Shephard, Todd)

Let W be an irreducible complex reflection group. Then W is isomorphic to

either the group G (de, e, r), where d , e, r ∈ Z+,

or one of the exceptional groups Gn (n = 4, . . . , 37).
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1 The complex reflection groups and their associated cyclotomic Hecke
algebras appear naturally in the classification of the “cyclotomic
Harish-Chandra series” of the characters of the finite reductive groups,
generalizing the role of the Weyl group and its traditional Hecke algebra in
the principal series (cf. [Broué, Malle, Michel, 1993], [Broué, Malle, 1993]).
Since the families of characters of the Weyl group play an essential role in
the definition of the families of unipotent characters of the corresponding
finite reductive group, we can hope that the families of characters of the
cyclotomic Hecke algebras play a key role in the organization of families of
unipotent characters more generally.

2 For some complex reflection groups (non-Coxeter), some data have been
gathered which seem to indicate that behind the group W , there exists
another mysterious object — the Spets — that could play the role of the
“series of finite reductive groups with Weyl group W ” (cf. [Broué, Malle,
Michel, 1999]). In some cases, one can define the unipotent characters of
the Spets, which are controlled by the “spetsial” Hecke algebra of W , a
generalization of the classical Iwahori-Hecke algebra of the Weyl groups.
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Michel, 1999]). In some cases, one can define the unipotent characters of
the Spets, which are controlled by the “spetsial” Hecke algebra of W , a
generalization of the classical Iwahori-Hecke algebra of the Weyl groups.
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Assumptions (verified for all but a finite number of cases)

Let W be a complex reflection group. Then the following hold:

The generic Hecke algebra H(W ) is a free Z[u,u−1]-module of rank |W |.

There exists a canonical symmetrizing form on H(W ).
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The example of G4

G4 =
〈

s, t | sts = tst, s3 = t3 = 1
〉

H(G4) =

〈
Ts ,Tt

∣∣∣∣∣∣
TsTtTs = TtTsTt ,
(Ts − u0)(Ts − ζ3u1)(Ts − ζ2

3u2) = 0,
(Tt − u0)(Tt − ζ3u1)(Tt − ζ2

3u2) = 0

〉

The algebra H(G4) is defined over Z[ζ3][u0, u1, u2, u
−1
0 , u−1

1 , u−1
2 ], where

ζ3 = exp(2πi/3).

We denote the characters of G4 by: χ1,0, χ1,4, χ1,8, χ2,5, χ2,3, χ2,1, χ3,2.
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Schur elements of G4 (essential in green):

s1,0 = Φ2(u0u
−1
1 ) · Φ′3(u0u

−1
1 ) · Φ′6(u0u

−1
1 ) · Φ2(u0u

−1
2 ) · Φ′′3 (u0u

−1
2 ) ·

Φ′′6 (u0u
−1
2 ) · Φ2(u2

0u−1
1 u−1

2 )

s2,1 = −ζ2
3u−1

0 u1 · Φ2(u0u
−1
1 ) · Φ′6(u0u

−1
1 ) · Φ′′3 (u0u

−1
2 ) · Φ′3(u1u

−1
2 ) ·

Φ2(u0u1u
−2
2 )

s3,2 = Φ2(u−2
0 u1u2) · Φ2(u0u

−2
1 u2) · Φ2(u0u1u

−2
2 )

Φ2(x) = x + 1, Φ′3(x) = x − ζ3, Φ′′3 (x) = x − ζ2
3 , Φ′6(x) = x + ζ2

3 , Φ′′6 (x) = x + ζ3.

Let ϕ : u0 7→ qm0 , u1 7→ qm1 , u2 7→ qm2 be a cyclotomic specialization of H(G4).

The essential hyperplanes for G2 are:

M0 = M1, M0 = M2, M1 = M2,

2M0 = M1 + M2, 2M1 = M0 + M2, 2M2 = M0 + M1
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Essential Hyperplane H BRH(G4)
∅ (χ1,0), (χ1,4), (χ1,8), (χ2,5), (χ2,3), (χ2,1), (χ3,2)

M0 = M1 (χ1,8), (χ1,0, χ1,4, χ2,1), (χ2,5, χ2,3), (χ3,2)
M0 = M2 (χ1,4), (χ1,0, χ1,8, χ2,3), (χ2,5, χ2,1), (χ3,2)
M1 = M2 (χ1,0), (χ1,4, χ1,8, χ2,5), (χ2,3, χ2,1), (χ3,2)

2M0 = M1 + M2 (χ1,0, χ2,5, χ3,2), (χ1,4), (χ1,8), (χ2,3), (χ2,1)
2M1 = M0 + M2 (χ1,4, χ2,3, χ3,2), (χ1,0), (χ1,8), (χ2,5), (χ2,1)
2M2 = M0 + M1 (χ1,8, χ2,1, χ3,2), (χ1,0), (χ1,4), (χ2,5), (χ2,3)

Let us take m0 := 1, m1 := 0 and m2 := 0.

These integers belong only to the
essential hyperplane M1 = M2. Therefore, the Rouquier blocks of H(G4)ϕ are:

(χ1,0), (χ1,4, χ1,8, χ2,5), (χ2,3, χ2,1), (χ3,2).
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