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Real reflection groups

Let V be a finite dimensional real vector space.

A real reflection group is a finite subgroup of GL(V ) generated by reflections,
that is, elements of order 2 that fix a hyperplane pointwise.

Examples

Dihedral groups D2n.

Symmetric groups Sn.

Let W be a real reflection group. Then W is a Coxeter group, that is, it has a
presentation of the form

W = 〈s ∈ S | stst . . .︸ ︷︷ ︸
mst

= tsts . . .︸ ︷︷ ︸
mst

∀s 6= t ∈ S , s2 = 1 ∀s ∈ S〉.

Every w ∈W is written as product s1s2 . . . sr with si ∈ S . If r is minimal, then r
is called the length of w and s1s2 . . . sr is a reduced expression for w .
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Iwahori–Hecke algebras

Let W = 〈s ∈ S | ststst . . .︸ ︷︷ ︸
mst

= tststs . . .︸ ︷︷ ︸
mst

∀s 6= t ∈ S , s2 = 1 ∀s ∈ S〉.

Then

H(W ) =

〈
(Ts)s∈S

∣∣∣∣∣∣
TsTtTsTt . . .︸ ︷︷ ︸

mst

= TtTsTtTs . . .︸ ︷︷ ︸
mst

∀s 6= t ∈ S

T 2
s = asTs + bs ∀s ∈ S

〉

is the Iwahori–Hecke algebra of W , defined over RW := Z[(as)s∈S , (b
±1
s )s∈S ].

Necessary condition: If s and t are conjugate in W , then as = at and bs = bt .

S3 =
〈
s, t

∣∣ sts = tst, s2 = t2 = 1
〉

H(S3) =
〈
Ts , Tt

∣∣ TsTtTs = TtTsTt , T 2
s = aTs + b, T 2

t = aTt + b
〉

D8 =
〈
s, t

∣∣ stst = tsts, s2 = t2 = 1
〉

H(D8) =
〈
Ts , Tt

∣∣ TsTtTsTt = TtTsTtTs , T 2
s = aTs + b, T 2

t = cTt + d
〉
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Complex reflection groups

Let V be a finite dimensional complex vector space.

A complex reflection group is a finite subgroup of GL(V ) generated by
pseudo-reflections, that is, elements of order > 2 that fix a hyperplane pointwise.

Theorem (Shephard–Todd)

Let W ⊂ GL(V ) be an irreducible complex reflection group (i.e., W acts
irreducibly on V ). Then one of the following assertions is true:

W ∼= G (de, e, r), where G (de, e, r) is the group of all r × r monomial
matrices whose non-zero entries are de-th roots of unity, while the product
of all non-zero entries is a d-th root of unity.

W ∼= Gn for some n = 4, . . . , 37.
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(Generic) Hecke algebras of complex reflection groups

G4 =
〈
s, t

∣∣ sts = tst, s3 = 1, t3 = 1
〉

H(G4) =

〈
Ts , Tt

∣∣∣∣∣∣
TsTtTs = TtTsTt ,

T 3
s = aT 2

s + bTs + c , T 3
t = aT 2

t + bTt + c

〉

over RG4 = Z[a, b, c±1].

G5 =
〈
s, t

∣∣ stst = tsts, s3 = 1, t3 = 1
〉

H(G4) =

〈
Ts , Tt

∣∣∣∣∣∣
TsTtTsTt = TtTsTtTs ,

T 3
s = aT 2

s + bTs + c , T 3
t = dT 2

t + eTt + f

〉

over RG5 = Z[a, b, c±1, d , e, f ±1].
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The Broué–Malle–Rouquier freeness conjecture

Theorem (since October)

The algebra H(W ) is a free RW -module of rank |W |.

It has been proved for :

the real reflection groups by Bourbaki;

the complex reflection groups G (de, e, r) by Ariki–Koike, Broué–Malle, Ariki;

the group G4 by Broué–Malle, Funar, Marin;

the group G12 by Marin–Pfeiffer;

the groups G4, . . . ,G16 by Chavli;

the groups G17, G18, G19 by Tsuchioka;

the groups G20, G21 by Marin;

the groups G22, . . . ,G37 by Marin, Marin–Pfeiffer.
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the group G4 by Broué–Malle, Funar, Marin;

the group G12 by Marin–Pfeiffer;

the groups G4, . . . ,G16 by Chavli;

the groups G17, G18, G19 by Tsuchioka;

the groups G20, G21 by Marin;

the groups G22, . . . ,G37 by Marin, Marin–Pfeiffer.
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The Broué–Malle–Michel symmetrising trace conjecture

Let B be an RW -basis for H(W ). Recall that |B| = |W |.

Conjecture

There exists a linear map τ : H(W )→ RW that satisfies the following conditions:

1 τ is a symmetrising trace, that is, the matrix A := (τ(bibj)bi ,bj∈B) is
symmetric and invertible over RW .

2 When H(W ) specialises to the group algebra of W , τ becomes the
canonical symmetrising trace given by τ(w) = δ1w for all w ∈W .

3 τ satisfies an extra condition, which makes it unique.

It has been proved for :

the real reflection groups by Bourbaki;

the complex reflection groups G (de, e, r) by Bremke–Malle, Malle–Mathas;

the groups G4, G12, G22, G24 by Malle–Michel (G4 also by Marin–Wagner).
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The idea of the algorithm for G4, . . . ,G8

We have |G4| = 24, |G5| = 72, |G6| = 48, |G7| = 144, |G8| = 96.

STEP 1: Let n ∈ {4, . . . , 8}. Take a basis Bn for each H(Gn) and define a linear
map τ on H(Gn) by setting τ(b) := δ1b for all b ∈ Bn. We must have 1 ∈ Bn and
Bn = W when H(W ) specialises to the group algebra of W . By construction, Bn
satisfies the second condition of the BMM symmetrising trace conjecture.

If h ∈ H(Gn), then τ(h) is the coefficient of 1 when h is expressed as a linear
combination of the elements of Bn.

STEP 2: Calculate the matrix A = (τ(bibj)bi ,bj∈Bn). Check whether A is
symmetric and invertible over RW . If yes, then τ satisfies the first condition of
the BMM symmetrising trace conjecture.

In her proof of the BMR freeness conjecture, Chavli provided explicit bases for
H(Gn) for n = 4, . . . , 16. However, note that not any basis will work for the proof
of the BMM symmetrising trace conjecture!

If not, go back to STEP 1 and modify Bn accordingly.

STEP 3: Check that the extra third condition holds.
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The C++ algorithm

For any bi , bj ∈ Bn, our C++ program expresses bibj as a linear combination of the
elements of Bn.

Then τ(bibj) is the coefficient of 1 in this linear combination.

The inputs of the algorithm are the following:

I1. The basis Bn.

I2. The braid, positive and inverse Hecke relations
(for example, s−1 = c−1s2 − ac−1s − bc−1).

I3. The “special cases”: these are some equalities computed by hand which
express a given element of H(Gn) as a sum of other elements in H(Gn).

The case of G4

We have B4 =

{
1, s, s2, t2, t, t2s, ts, t2s2, ts2, st2, st, st2s, sts, st2s2, sts2,
s2t2, s2t, s2t2s, s2ts, s2t2s2, s2ts2, ststst, stststs, stststs2

}
.

Running the C++ program takes about 1 hour on an Intel Core i5 CPU.
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The SAGE algorithm

Let n ∈ {5, . . . , 8}.

Our SAGE program produces the matrix A row by row, using
the distinctive pattern of the basis Bn.

From now on, we identify Ts with s and Tt with t.

There exists a central element z ∈ Z (H(Gn)), and a subset En of Bn with
1, s, t ∈ En such that

Bn = {zke | e ∈ En, k = 0, 1, . . . , |Z (Gn)| − 1}.
We have |En| = 12 for n = 5, 6, 7 and |E8| = 24.

The curious case of G7

3 elements have to be replaced!

The inputs of the SAGE algorithm are the coefficients of the following elements
when written as linear combinations of the elements of Bn:

I1. sbj for all bj ∈ Bn.

I2. tbj for all bj ∈ Bn.

I3. z |Z(Gn)| = z · z |Z(Gn)|−1.
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The case of G5

H(G5) =
〈
s, t

∣∣ stst = tsts, s3 = as2 + bs + c , t3 = dt2 + et + f
〉
.

E5 =
{

1, s, s2, t, t2, st, s2t, st2, s2t2, t−1s, t−1st, t−1st2
}

= {b1, b2 . . . , b12}.

z = stst.

B5 = {zkbm |m = 1, 2, . . . , 12, k = 0, 1, . . . , 5}.

We set b12k+m := zkbm. We observe that we have:

b12k+2 = b12k+1 · s, b12k+8 = b12k+6 · t,

b12k+3 = b12k+2 · s, b12k+9 = b12k+7 · t,

b12k+4 = b12k+1 · t, b12k+10 = f −1(b12k+5 − db12k+4 − eb12k+1) · s,

b12k+5 = b12k+4 · t, b12k+11 = b12k+10 · t,

b12k+6 = b12k+2 · t, b12k+12 = b12k+11 · t.

b12k+7 = b12k+3 · t
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The case of G5

Let j ∈ {1, . . . , 72}. Using the C++ program, we have expressed sbj , tbj and
z6 = b237 as linear combinations of the elements of B5 with coefficients in
Z[a, b, c±1, d , e, f ±1].

Let sbj =
∑

l λ
s
j,lbl , tbj =

∑
l λ

t
j,lbl and z6 =

∑
l µlbl .

Examples

τ(b12k+4bj) = τ(b12k+1tbj) =
∑

l λ
t
j,lτ(b12k+1bl).

τ(b12k+10bj) = f −1
∑

l λ
s
j,l(τ(b12k+5bl)− dτ(b12k+4bl)− eτ(b12k+1bl)).

We now consider the case of b12k+1 = zk , for k 6= 0. We distinguish two cases:

If 1 6 j 6 12(6− k), then we have b12k+1bj ∈ B5, whence τ(b12k+1bj) = 0.

If 12(6− k) < j 6 72, then b12k+1bj = zkbj = zk−6bjz
6 = b12k+j−72 · z6.

We get

τ(b12k+1bj) = τ(b12k+j−72 · z6) =
∑
l

µlτ(b12k+j−72 bl).
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The extra condition

Malle and Michel have shown that, since

1 Bn = {Tw |w ∈ Gn},

2 τ(b) = δ1b for all b ∈ Bn, and

3 Bn is a basis of H(Gn) as an RGn -module,

the extra condition of the BMM symmetrising trace conjecture translates as:

τ
(
z |Z(Gn)|b−1

)
= 0 for all b ∈ Bn \ {1}.

We used GAP to prove the extra condition for G4, G6 and G8.

We directly proved the extra condition for G5 and G7, by expressing
τ
(
z |Z(Gn)|b−1

)
as a linear combination of entries of the matrix A.
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The main results

Theorem (Boura–Chavli–C.–Karvounis)

Let n ∈ {4, . . . , 8}. The BMM symmetrising trace conjecture holds for Gn.

Our C++ program has expressed sbj and tbj as linear combinations of the
elements of Bn, for all bj ∈ Bn (in the case of G7, the product of the third
generator with any bj is deduced from the other two). This in fact allows us to
express any product of the generators, and thus any element, of H(Gn) as a linear
combination of the elements of Bn.

Theorem (Boura–Chavli–C.–Karvounis)

Let n ∈ {4, . . . , 8}. The set Bn is a basis for H(Gn) as an RGn -module. In
particular, the BMR freeness conjecture holds for Gn.
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