Schur elements and Rouquier blocks

Maria Chlouveraki

EPFL

Nikolaus Conference 2007

December 7, 2007

• Every complex reflection group W has a nice "presentation a la Coxeter" :

• Every complex reflection group W has a nice "presentation a la Coxeter" :

$$G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$$

• Every complex reflection group W has a nice "presentation a la Coxeter" :

$$G_4 = \langle s, t \mid sts = tst, s^3 = t^3 = 1 \rangle$$

and a field of realization K_W (with ring of integers \mathbb{Z}_K):

• Every complex reflection group W has a nice "presentation a la Coxeter" :

$$G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$$

and a field of realization K_W (with ring of integers \mathbb{Z}_K): $K_{G_4} = \mathbb{Q}(\zeta_3)$.

• Every complex reflection group W has a nice "presentation a la Coxeter" :

$$G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$$

and a field of realization K_W (with ring of integers \mathbb{Z}_K): $K_{G_4} = \mathbb{Q}(\zeta_3)$.

We choose a set of indeterminates

$$\mathbf{u}=(u_{s,j})_{s,\,0\leq j\leq \mathbf{o}(s)-1}$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s

• Every complex reflection group W has a nice "presentation a la Coxeter" :

$$G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$$

and a field of realization K_W (with ring of integers \mathbb{Z}_K): $K_{G_4} = \mathbb{Q}(\zeta_3)$.

We choose a set of indeterminates

$$\mathbf{u}=(u_{s,j})_{s,\ 0\leq j\leq \mathbf{o}(s)-1}$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s,j} = u_{t,j}$ for all j).

• Every complex reflection group W has a nice "presentation a la Coxeter" :

$$G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$$

and a field of realization K_W (with ring of integers \mathbb{Z}_K): $K_{G_4} = \mathbb{Q}(\zeta_3)$.

We choose a set of indeterminates

$$\mathbf{u} = (u_{s,j})_{s, 0 \le j \le \mathbf{o}(s)-1}$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s,j} = u_{t,j}$ for all j).

• The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ and has a presentation of the form :

• Every complex reflection group W has a nice "presentation a la Coxeter" :

$$G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$$

and a field of realization K_W (with ring of integers \mathbb{Z}_K): $K_{G_4} = \mathbb{Q}(\zeta_3)$.

We choose a set of indeterminates

$$\mathbf{u} = (u_{s,j})_{s, 0 \le j \le \mathbf{o}(s)-1}$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s,j} = u_{t,j}$ for all j).

• The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ and has a presentation of the form :

$$\mathcal{H}(G_4) = < S, T \mid STS = TST, (S - u_0)(S - u_1)(S - u_2) = 0, (T - u_0)(T - u_1)(T - u_2) = 0 > .$$

• Every complex reflection group W has a nice "presentation a la Coxeter" :

$$G_4 = \langle s, t | sts = tst, s^3 = t^3 = 1 \rangle$$

and a field of realization K_W (with ring of integers \mathbb{Z}_K): $K_{G_4} = \mathbb{Q}(\zeta_3)$.

We choose a set of indeterminates

$$\mathbf{u} = (u_{s,j})_{s, 0 \le j \le \mathbf{o}(s)-1}$$

where s runs over the set of generators of W and $\mathbf{o}(s)$ denotes the order of s (if s and t are conjugate in W, then $u_{s,j} = u_{t,j}$ for all j).

• The associated generic Hecke algebra $\mathcal{H}(W)$ is an algebra over the Laurent polynomial ring $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ and has a presentation of the form :

$$\mathcal{H}(G_4) = < S, T \mid STS = TST, (S - u_0)(S - u_1)(S - u_2) = 0, (T - u_0)(T - u_1)(T - u_2) = 0 > .$$

• $u_j \mapsto \zeta_3^j$ (j = 0, 1, 2), $\mathcal{H}(G_4) \mapsto \mathbb{Z}_K[G_4]$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 釣 9 0 0 0

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.
- There exists a unique linear form $t: \mathcal{H}(W) \to \mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ such that
 - t is a symmetrizing form on $\mathcal{H}(W)$.
 - t satisfies some other conditions.

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.
- There exists a unique linear form $t:\mathcal{H}(W) o \mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ such that
 - t is a symmetrizing form on $\mathcal{H}(W)$.
 - t satisfies some other conditions.

Thanks to a theorem by G.Malle, we can find a set of indeterminates \mathbf{v} such that the algebra $K_W(\mathbf{v})\mathcal{H}(W)$ is split semisimple

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.
- There exists a unique linear form $t:\mathcal{H}(W) o \mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ such that
 - t is a symmetrizing form on $\mathcal{H}(W)$.
 - t satisfies some other conditions.

Thanks to a theorem by G.Malle, we can find a set of indeterminates \mathbf{v} such that the algebra $K_W(\mathbf{v})\mathcal{H}(W)$ is split semisimple $(\mathbf{v}=(v_j)_{0\leq j\leq 2}$ where $v_j^6:=\zeta_j^{-3}u_j)$.

- The algebra $\mathcal{H}(W)$ is a free $\mathbb{Z}[\mathbf{u},\mathbf{u}^{-1}]$ -module of rank |W|.
- There exists a unique linear form $t: \mathcal{H}(W) \to \mathbb{Z}[\mathbf{u}, \mathbf{u}^{-1}]$ such that
 - t is a symmetrizing form on $\mathcal{H}(W)$.
 - t satisfies some other conditions.

Thanks to a theorem by G.Malle, we can find a set of indeterminates \mathbf{v} such that the algebra $K_W(\mathbf{v})\mathcal{H}(W)$ is split semisimple $(\mathbf{v}=(v_j)_{0\leq j\leq 2}$ where $v_j^6:=\zeta_j^{-3}u_j)$.

We have that

$$t = \sum_{\chi_{\mathbf{v}} \in \operatorname{Irr}(K_W(\mathbf{v})\mathcal{H}(W))} \frac{1}{s_{\chi_{\mathbf{v}}}} \chi_{\mathbf{v}},$$

where $s_{\chi_{\mathbf{v}}}$ is the Schur element associated with the irreducible character $\chi_{\mathbf{v}}$.

Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A cyclotomic specialization of $\mathcal H$ is a $\mathbb Z_K$ -algebra morphism $\phi: v_j \mapsto y^{n_j}$ where $n_j \in \mathbb Z$ for all j. The corresponding cyclotomic Hecke algebra $\mathcal H_\phi$ is the $\mathbb Z_K[y,y^{-1}]$ -algebra obtained as the specialization of the $\mathcal H$ via the morphism ϕ .

Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A cyclotomic specialization of $\mathcal H$ is a $\mathbb Z_K$ -algebra morphism $\phi: v_j \mapsto y^{n_j}$ where $n_j \in \mathbb Z$ for all j. The corresponding cyclotomic Hecke algebra $\mathcal H_\phi$ is the $\mathbb Z_K[y,y^{-1}]$ -algebra obtained as the specialization of the $\mathcal H$ via the morphism ϕ .

Proposition (C.)

The algebra $K_W(y)\mathcal{H}_{\phi}$ is split semisimple.

Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A cyclotomic specialization of $\mathcal H$ is a $\mathbb Z_K$ -algebra morphism $\phi: v_j \mapsto y^{n_j}$ where $n_j \in \mathbb Z$ for all j. The corresponding cyclotomic Hecke algebra $\mathcal H_\phi$ is the $\mathbb Z_K[y,y^{-1}]$ -algebra obtained as the specialization of the $\mathcal H$ via the morphism ϕ .

Proposition (C.)

The algebra $K_W(y)\mathcal{H}_{\phi}$ is split semisimple.

By "Tits' deformation theorem", we obtain that the specialization $v_j\mapsto 1$ induces the following bijections :

$$\operatorname{Irr}(K_{W}(\mathbf{v})\mathcal{H}) \quad \leftrightarrow \quad \operatorname{Irr}(K_{W}(y)\mathcal{H}_{\phi}) \quad \leftrightarrow \quad \operatorname{Irr}(W) \\
\chi_{\mathbf{v}} \quad \mapsto \quad \chi_{\phi} \quad \mapsto \quad \chi$$

Definition

We call Rouquier ring of K_W and denote by $\mathcal{R}_K(y)$ the \mathbb{Z}_K -subalgebra of $K_W(y)$

$$\mathcal{R}_{K}(y) := \mathbb{Z}_{K}[y, y^{-1}, (y^{n} - 1)_{n \geq 1}^{-1}].$$

Definition

We call Rouquier ring of K_W and denote by $\mathcal{R}_K(y)$ the \mathbb{Z}_K -subalgebra of $K_W(y)$

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)_{n \geq 1}^{-1}].$$

Let ϕ be a cyclotomic specialization. The Rouquier blocks of the corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{\kappa}(y)\mathcal{H}_{\phi}$,

Definition

We call Rouquier ring of K_W and denote by $\mathcal{R}_K(y)$ the \mathbb{Z}_K -subalgebra of $K_W(y)$

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)_{n \ge 1}^{-1}].$$

Let ϕ be a cyclotomic specialization. The Rouquier blocks of the corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{\mathcal{K}}(y)\mathcal{H}_{\phi}$, i.e., the minimal partition $\mathcal{BR}(\mathcal{H}_{\phi})$ of $\mathrm{Irr}(W)$ for the property:

For all
$$B \in \mathcal{BR}(\mathcal{H}_{\phi})$$
 and $h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{\kappa}(y)$.

Definition

We call Rouquier ring of K_W and denote by $\mathcal{R}_K(y)$ the \mathbb{Z}_K -subalgebra of $K_W(y)$

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)_{n>1}^{-1}].$$

Let ϕ be a cyclotomic specialization. The Rouquier blocks of the corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{\mathcal{K}}(y)\mathcal{H}_{\phi}$, i.e., the minimal partition $\mathcal{BR}(\mathcal{H}_{\phi})$ of $\mathrm{Irr}(W)$ for the property:

For all
$$B \in \mathcal{BR}(\mathcal{H}_{\phi})$$
 and $h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{K}(y)$.

W Weyl group: Rouquier blocks \equiv "families of characters"

Definition

We call Rouquier ring of K_W and denote by $\mathcal{R}_K(y)$ the \mathbb{Z}_K -subalgebra of $K_W(y)$

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)_{n \ge 1}^{-1}].$$

Let ϕ be a cyclotomic specialization. The Rouquier blocks of the corresponding cyclotomic Hecke algebra \mathcal{H}_{ϕ} are the blocks of the algebra $\mathcal{R}_{K}(y)\mathcal{H}_{\phi}$, i.e., the minimal partition $\mathcal{BR}(\mathcal{H}_{\phi})$ of $\mathrm{Irr}(W)$ for the property:

For all
$$B \in \mathcal{BR}(\mathcal{H}_{\phi})$$
 and $h \in \mathcal{H}_{\phi}, \sum_{\chi \in B} \frac{\chi_{\phi}(h)}{s_{\chi_{\phi}}} \in \mathcal{R}_{\kappa}(y)$.

W Weyl group: Rouquier blocks \equiv "families of characters" W c.r.g.(non-Weyl): Rouquier blocks \equiv ?

Generic Schur elements

Theorem (C.)

The Schur element $s_{\chi}(\mathbf{v})$ associated with the character $\chi_{\mathbf{v}}$ of $K(\mathbf{v})\mathcal{H}$ is an element of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]$ of the form

$$s_{\chi}(\mathbf{v}) = \xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi,i} (M_{\chi,i})^{n_{\chi,i}}$$

where

- ξ_{χ} is an element of \mathbb{Z}_{K} ,
- N_{χ} is a degree zero monomial in $\mathbb{Z}_{K}[\mathbf{v},\mathbf{v}^{-1}]$,
- I_{χ} is an index set,
- $(\Psi_{\chi,i})_{i\in I_\chi}$ is a family of *K*-cyclotomic polynomials in one variable,
- $(M_{\chi,i})_{i\in I_\chi}$ is a family of degree zero primitive monomials in $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]$,
- $(n_{\chi,i})_{i \in I_{\chi}}$ is a family of positive integers.

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K .

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K .

Definition

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K .

Definition

Let $M = \prod_j v_j^{a_j}$ be a primitive monomial in $\mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}]$, *i.e.*, $\gcd(a_j) = 1$.

• We say that M is a p-essential monomial for W, if there exist an irreducible character χ of W and a K_W -cyclotomic polynomial Ψ such that

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K .

Definition

- We say that M is a p-essential monomial for W, if there exist an irreducible character χ of W and a K_W -cyclotomic polynomial Ψ such that
 - **1** $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$,

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K .

Definition

- We say that M is a p-essential monomial for W, if there exist an irreducible character χ of W and a K_W -cyclotomic polynomial Ψ such that
 - **1** $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$,
 - $\Psi(1) \in \mathfrak{p}.$

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K .

Definition

- We say that M is a p-essential monomial for W, if there exist an irreducible character χ of W and a K_W -cyclotomic polynomial Ψ such that
 - **1** $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$,
 - $\Psi(1) \in \mathfrak{p}.$
- If M is a p-essential monomial for W, then the hyperplane H_M defined by Log(M)=0, i.e., $\sum_j a_j V_j=0$, is called a p-essential hyperplane for W.

Let \mathfrak{p} be a prime ideal of \mathbb{Z}_K .

Definition

Let $M = \prod_j v_j^{a_j}$ be a primitive monomial in $\mathbb{Z}_K[\mathbf{v}, \mathbf{v}^{-1}]$, *i.e.*, $\gcd(a_j) = 1$.

- We say that M is a p-essential monomial for W, if there exist an irreducible character χ of W and a K_W -cyclotomic polynomial Ψ such that
 - **1** $\Psi(M)$ divides $s_{\chi}(\mathbf{v})$,
 - $\Psi(1) \in \mathfrak{p}.$
- If M is a p-essential monomial for W, then the hyperplane H_M defined by Log(M)=0, i.e., $\sum_j a_j V_j=0$, is called a p-essential hyperplane for W.

Let $\phi: v_j \mapsto y^{n_j}$ be a cyclotomic specialization and $M = \prod_j v_j^{a_j}$ be a \mathfrak{p} -essential monomial for W. We have $\phi(M) = 1$ if and only if the powers n_j belong to the \mathfrak{p} -essential hyperplane H_M .

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\mathrm{Irr}(W)$ into blocks of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]_{\mathfrak{p}}\mathcal{H}$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\mathrm{Irr}(W)$ into blocks of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]_{\mathfrak{p}}\mathcal{H}$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}[y,y^{-1}]_{\mathfrak{p}}\mathcal{H}_{\phi}$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]_{\mathfrak{p}}\mathcal{H}$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}[y,y^{-1}]_{\mathfrak{p}}\mathcal{H}_{\phi}$.

Main Theorem (C.)

For every \mathfrak{p} -essential hyperplane H for W, there exists a partition $\mathcal{B}^H_{\mathfrak{p}}(\mathcal{H})$ of $\operatorname{Irr}(W)$ with the following properties:

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]_{\mathfrak{p}}\mathcal{H}$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}[y,y^{-1}]_{\mathfrak{p}}\mathcal{H}_{\phi}$.

Main Theorem (C.)

For every \mathfrak{p} -essential hyperplane H for W, there exists a partition $\mathcal{B}^H_{\mathfrak{p}}(\mathcal{H})$ of $\mathrm{Irr}(W)$ with the following properties:

1 The parts of $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\mathrm{Irr}(W)$ into blocks of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]_{\mathfrak{p}}\mathcal{H}$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}[y,y^{-1}]_{\mathfrak{p}}\mathcal{H}_{\phi}$.

Main Theorem (C.)

For every \mathfrak{p} -essential hyperplane H for W, there exists a partition $\mathcal{B}^H_{\mathfrak{p}}(\mathcal{H})$ of $\mathrm{Irr}(W)$ with the following properties:

- **1** The parts of $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.
- ② The partition $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ is the partition generated by the partitions $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ and $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$, where H runs over the set of all \mathfrak{p} -essential hyperplanes the n_{j} belong to.

p-blocks and p-essential hyperplanes

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ be the partition of $\mathrm{Irr}(W)$ into blocks of $\mathbb{Z}_K[\mathbf{v},\mathbf{v}^{-1}]_{\mathfrak{p}}\mathcal{H}$.

Let $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ be the partition of $\operatorname{Irr}(W)$ into blocks of $\mathbb{Z}_{K}[y,y^{-1}]_{\mathfrak{p}}\mathcal{H}_{\phi}$.

Main Theorem (C.)

For every \mathfrak{p} -essential hyperplane H for W, there exists a partition $\mathcal{B}^H_{\mathfrak{p}}(\mathcal{H})$ of $\mathrm{Irr}(W)$ with the following properties:

- **1** The parts of $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$ are unions of the parts of $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$.
- ② The partition $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$ is the partition generated by the partitions $\mathcal{B}_{\mathfrak{p}}(\mathcal{H})$ and $\mathcal{B}_{\mathfrak{p}}^{H}(\mathcal{H})$, where H runs over the set of all \mathfrak{p} -essential hyperplanes the n_{j} belong to.
- **3** The Rouquier blocks of \mathcal{H}_{ϕ} coincide with the partition generated by the partitions $\mathcal{B}_{\mathfrak{p}}(\mathcal{H}_{\phi})$, where \mathfrak{p} runs over the set of all prime ideals of \mathbb{Z}_{K} .

The characters of G_4 are denoted by $\chi_{d,b}$, where d is their degree and b is the valuation of their fake degree. These are $\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}$.

The characters of G_4 are denoted by $\chi_{d,b}$, where d is their degree and b is the valuation of their fake degree. These are $\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2}$.

2-essential in purple, 3-essential in green

$$\begin{split} s_{1,0} &= \ \Phi_{19}^{9}(v_{0}v_{1}^{-1}) \cdot \Phi_{18}^{\prime}(v_{0}v_{1}^{-1}) \cdot \Phi_{4}^{\prime}(v_{0}v_{1}^{-1}) \cdot \Phi_{12}^{\prime}(v_{0}v_{1}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{0}v_{1}^{-1}) \cdot \\ & \ \Phi_{36}^{\prime\prime}(v_{0}v_{1}^{-1}) \cdot \Phi_{9}^{\prime\prime}(v_{0}v_{2}^{-1}) \cdot \Phi_{18}^{\prime\prime}(v_{0}v_{2}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{0}v_{2}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{0}v_{2}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{0}v_{2}^{-1}) \cdot \Phi_{36}^{\prime\prime}(v_{0}v_{2}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{0}^{\prime}v_{1}^{-1}v_{2}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{0}^{\prime}v_{1}^{-1}v_{2}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{0}^{\prime}v_{1}^{-1}v_{2}^{-1}) \cdot \Phi_{18}^{\prime\prime}(v_{1}v_{0}^{-1}) \cdot \Phi_{18}^{\prime\prime}(v_{1}v_{0}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}) \cdot \Phi_{18}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}) \cdot \\ & \ \Phi_{4}^{\prime\prime}(v_{1}v_{2}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{1}v_{2}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{1}v_{2}^{-1}) \cdot \Phi_{36}^{\prime\prime}(v_{1}v_{2}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{0}^{-2}v_{1}v_{2}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{0}^{-2}v_{1}v_{2}) \cdot \Phi_{12}^{\prime\prime}(v_{0}^{-2}v_{1}v_{2}) \end{split}$$

$$s_{3,2} = \ \Phi_{4}^{\prime}(v_{0}^{\prime}v_{1}^{-1}v_{2}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{0}^{\prime}v_{1}^{-1}v_{2}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{0}^{\prime}v_{1}^{-1}v_{2}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{1}^{\prime}v_{2}^{-1}v_{0}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{1}^{\prime}v_{2}^{-1}v_{0}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{1}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \Phi_{4}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \\ & \ \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot \Phi_{12}^{\prime\prime}(v_{2}^{\prime}v_{0}^{-1}v_{0}^{-1}) \cdot$$

$$\Phi_4(x) = x^2 + 1$$
, $\Phi_9'(x) = x^3 - \zeta_3$, $\Phi_9''(x) = x^3 - \zeta_3^2$, $\Phi_{12}''(x) = x^2 + \zeta_3$, $\Phi_{12}'(x) = x^2 + \zeta_3^2$, $\Phi_{18}''(x) = x^3 + \zeta_3$, $\Phi_{18}'(x) = x^3 + \zeta_3^2$, $\Phi_{36}''(x) = x^6 + \zeta_3^2$.

The essential monomials for G_4 are

$$\begin{split} M_{0,1} &:= v_0 v_1^{-1}, \ M_{0,2} := v_0 v_2^{-1}, \ M_{1,2} := v_1 v_2^{-1}, \\ M_0 &:= v_0^2 v_1^{-1} v_2^{-1}, \ M_1 := v_1^2 v_2^{-1} v_0^{-1}, \ M_2 := v_2^2 v_0^{-1} v_1^{-1}. \end{split}$$

They are all 2-essential, whereas only the first three are 3-essential.

The essential monomials for G_4 are

$$M_{0,1} := v_0 v_1^{-1}, \ M_{0,2} := v_0 v_2^{-1}, \ M_{1,2} := v_1 v_2^{-1},$$

$$M_0 := v_0^2 v_1^{-1} v_2^{-1}, \ M_1 := v_1^2 v_2^{-1} v_2^{-1}, \ M_2 := v_2^2 v_2^{-1} v_1^{-1}.$$

They are all 2-essential, whereas only the first three are 3-essential.

Let c_0, c_1, c_2 be three indeterminates. The corresponding essential hyperplanes for G_4 in \mathbb{C}^3 are given by

$$H_{0,1}: c_0 = c_1, \ H_{0,2}: c_0 = c_2, \ H_{1,2}: c_1 = c_2,$$

$$H_0: 2c_0 = c_1 + c_2, \ H_1: 2c_1 = c_2 + c_0, \ H_2: 2c_2 = c_0 + c_1.$$

They are all 2-essential, whereas only the first three are 3-essential.

The essential monomials for G_4 are

$$M_{0,1} := v_0 v_1^{-1}, \ M_{0,2} := v_0 v_2^{-1}, \ M_{1,2} := v_1 v_2^{-1},$$

$$M_0 := v_0^2 v_1^{-1} v_2^{-1}, \ M_1 := v_1^2 v_2^{-1} v_0^{-1}, \ M_2 := v_2^2 v_0^{-1} v_1^{-1}.$$

They are all 2-essential, whereas only the first three are 3-essential.

Let c_0, c_1, c_2 be three indeterminates. The corresponding essential hyperplanes for G_4 in \mathbb{C}^3 are given by

$$H_{0,1}: c_0 = c_1, \ H_{0,2}: c_0 = c_2, \ H_{1,2}: c_1 = c_2,$$

$$H_0: 2c_0 = c_1 + c_2, \ H_1: 2c_1 = c_2 + c_0, \ H_2: 2c_2 = c_0 + c_1.$$

They are all 2-essential, whereas only the first three are 3-essential.

We have created the GAP function

Essential Hyperplanes
$$(W, p)$$

which returns the above information for any exceptional irreducible complex reflection group W.

Hyperplane	$\mathcal{B}_2^H(\mathcal{H}) \cup \mathcal{B}_3^H(\mathcal{H})$	$\mathcal{B}_2^H(\mathcal{H})$	$\mathcal{B}_3^{H}(\mathcal{H})$
None	-	-	-
$H_{0,1}$	$(\chi_{1,0},\chi_{1,4},\chi_{2,1}),$ $(\chi_{2,5},\chi_{2,3})$	$(\chi_{1,0},\chi_{1,4},\chi_{2,1})$	$(\chi_{1,0},\chi_{1,4}), (\chi_{2,5},\chi_{2,3})$
$H_{0,2}$	$(\chi_{1,0},\chi_{1,8},\chi_{2,3}),$ $(\chi_{2,5},\chi_{2,1})$	$(\chi_{1,0},\chi_{1,8},\chi_{2,3})$	$(\chi_{1,0},\chi_{1,8}), (\chi_{2,5},\chi_{2,1})$
$H_{1,2}$	$(\chi_{1,4}, \chi_{1,8}, \chi_{2,5}),$ $(\chi_{2,3}, \chi_{2,1})$	$(\chi_{1,4},\chi_{1,8},\chi_{2,5})$	$(\chi_{1,4},\chi_{1,8}), (\chi_{2,3},\chi_{2,1})$
H_0	$(\chi_{1,0},\chi_{2,5},\chi_{3,2})$	$(\chi_{1,0},\chi_{2,5},\chi_{3,2})$	-
H_1	$(\chi_{1,4},\chi_{2,3},\chi_{3,2})$	$(\chi_{1,4},\chi_{2,3},\chi_{3,2})$	-
H_2	$(\chi_{1,8},\chi_{2,1},\chi_{3,2})$	$(\chi_{1,8},\chi_{2,1},\chi_{3,2})$	-

Hyperplane	$egin{aligned} \mathcal{B}_2^H(\mathcal{H}) \cup \mathcal{B}_3^H(\mathcal{H}) \end{aligned}$	$\mathcal{B}_2^H(\mathcal{H})$	$\mathcal{B}_3^{H}(\mathcal{H})$
None	-	-	-
$H_{0,1}$	$(\chi_{1,0},\chi_{1,4},\chi_{2,1}),$ $(\chi_{2,5},\chi_{2,3})$	$(\chi_{1,0},\chi_{1,4},\chi_{2,1})$	$(\chi_{1,0},\chi_{1,4}), (\chi_{2,5},\chi_{2,3})$
$H_{0,2}$	$(\chi_{1,0},\chi_{1,8},\chi_{2,3}),$ $(\chi_{2,5},\chi_{2,1})$	$(\chi_{1,0},\chi_{1,8},\chi_{2,3})$	$(\chi_{1,0},\chi_{1,8}), (\chi_{2,5},\chi_{2,1})$
$H_{1,2}$	$(\chi_{1,4}, \chi_{1,8}, \chi_{2,5}), (\chi_{2,3}, \chi_{2,1})$	$(\chi_{1,4},\chi_{1,8},\chi_{2,5})$	$(\chi_{1,4},\chi_{1,8}), (\chi_{2,3},\chi_{2,1})$
H_0	$(\chi_{1,0},\chi_{2,5},\chi_{3,2})$	$(\chi_{1,0},\chi_{2,5},\chi_{3,2})$	-
H_1	$(\chi_{1,4},\chi_{2,3},\chi_{3,2})$	$(\chi_{1,4},\chi_{2,3},\chi_{3,2})$	-
H_2	$(\chi_{1,8},\chi_{2,1},\chi_{3,2})$	$(\chi_{1,8},\chi_{2,1},\chi_{3,2})$	-

We have created the GAP functions

DisplayAllBlocks(W) and DisplayAllpBlocks(W)

which display the above information for any exceptional irreducible complex reflection group $\ensuremath{W}.$

$$\mathcal{H}_{\phi} = \langle S, T \mid STS = TST, (S-1)(S-\zeta_3x)(S-\zeta_3^2x^2) = 0 \ (T-1)(T-\zeta_3x)(T-\zeta_3^2x^2) = 0 >$$

$$\mathcal{H}_{\phi} = \langle S, T \mid STS = TST, (S-1)(S-\zeta_3x)(S-\zeta_3^2x^2) = 0 \ (T-1)(T-\zeta_3x)(T-\zeta_3^2x^2) = 0 >$$

The powers of x belong to the essential hyperplane H_1 , thus the Rouquier blocks of \mathcal{H}_{ϕ} are

$$\mathcal{H}_{\phi} = \langle S, T \mid STS = TST, (S-1)(S-\zeta_3x)(S-\zeta_3^2x^2) = 0 \ (T-1)(T-\zeta_3x)(T-\zeta_3^2x^2) = 0 >$$

The powers of x belong to the essential hyperplane H_1 , thus the Rouquier blocks of \mathcal{H}_{ϕ} are

$$(\chi_{1,4}, \chi_{2,3}, \chi_{3,2}) \bigcup$$
 (singletons).

$$\mathcal{H}_{\phi} = \langle S, T \mid STS = TST, (S-1)(S-\zeta_3x)(S-\zeta_3^2x^2) = 0 \ (T-1)(T-\zeta_3x)(T-\zeta_3^2x^2) = 0 >$$

The powers of x belong to the essential hyperplane H_1 , thus the Rouquier blocks of \mathcal{H}_{ϕ} are

$$(\chi_{1,4},\chi_{2,3},\chi_{3,2})$$
 \bigcup (singletons).

For any exceptional irreducible complex reflection group W, the GAP function

displays the Rouquier blocks of a given cyclotomic Hecke algebra H.

$$\mathbb{Z}[\zeta_3][G_4] \simeq \langle S, T \mid STS = TST, (S-1)(S-\zeta_3)(S-\zeta_3^2) = 0 \ (T-1)(T-\zeta_3)(T-\zeta_3^2) = 0 >$$

$$\mathbb{Z}[\zeta_3][G_4] \simeq \langle S, T \mid STS = TST, (S-1)(S-\zeta_3)(S-\zeta_3^2) = 0 \ (T-1)(T-\zeta_3)(T-\zeta_3^2) = 0 >$$

$$\mathbb{Z}[\zeta_3][G_4] \simeq \langle S, T \mid STS = TST, (S-1)(S-\zeta_3)(S-\zeta_3^2) = 0 \ (T-1)(T-\zeta_3)(T-\zeta_3^2) = 0 >$$

Rouquier block
$$(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2})$$

$$\mathbb{Z}[\zeta_3][G_4] \simeq \langle S, T \mid STS = TST, (S-1)(S-\zeta_3)(S-\zeta_3^2) = 0 \ (T-1)(T-\zeta_3)(T-\zeta_3^2) = 0 >$$

Rouquier block
$$(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2})$$

2-block $(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2})$

$$\mathbb{Z}[\zeta_3][G_4] \simeq \langle S, T \mid STS = TST, (S-1)(S-\zeta_3)(S-\zeta_3^2) = 0 \ (T-1)(T-\zeta_3)(T-\zeta_3^2) = 0 >$$

Rouquier block
$$(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2})$$

2-block $(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}, \chi_{2,5}, \chi_{2,3}, \chi_{2,1}, \chi_{3,2})$
3-blocks $(\chi_{1,0}, \chi_{1,4}, \chi_{1,8}), (\chi_{2,5}, \chi_{2,3}, \chi_{2,1}), (\chi_{3,2})$

$$(y^n)^+ := \left\{ \begin{array}{ll} n, & \text{if } n > 0; \\ 0, & \text{if } n \leq 0. \end{array} \right. \text{ and } (y^n)^- := \left\{ \begin{array}{ll} n, & \text{if } n < 0; \\ 0, & \text{if } n \geq 0. \end{array} \right.$$

$$(y^n)^+ := \left\{ \begin{array}{ll} n, & \text{if } n > 0; \\ 0, & \text{if } n \le 0. \end{array} \right. \text{ and } (y^n)^- := \left\{ \begin{array}{ll} n, & \text{if } n < 0; \\ 0, & \text{if } n \ge 0. \end{array} \right.$$

Let $\chi \in Irr(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$s_{\chi}(\mathbf{v}) = \xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi,i} (M_{\chi,i})^{n_{\chi,i}} \qquad (\dagger)$$

$$(y^n)^+ := \left\{ \begin{array}{ll} n, & \text{if } n > 0; \\ 0, & \text{if } n \le 0. \end{array} \right. \text{ and } (y^n)^- := \left\{ \begin{array}{ll} n, & \text{if } n < 0; \\ 0, & \text{if } n \ge 0. \end{array} \right.$$

Let $\chi \in Irr(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$s_{\chi}(\mathbf{v}) = \xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi,i} (M_{\chi,i})^{n_{\chi,i}} \qquad (\dagger)$$

We fix the factorization (†) for $s_{\chi}(\mathbf{v})$. Let $\phi: v_j \mapsto y^{n_j}$ be a cyclotomic specialization. Then

$$(y^n)^+ := \left\{ \begin{array}{ll} n, & \text{if } n > 0; \\ 0, & \text{if } n \leq 0. \end{array} \right. \text{ and } (y^n)^- := \left\{ \begin{array}{ll} n, & \text{if } n < 0; \\ 0, & \text{if } n \geq 0. \end{array} \right.$$

Let $\chi \in Irr(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$s_{\chi}(\mathbf{v}) = \xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi,i} (M_{\chi,i})^{n_{\chi,i}} \qquad (\dagger)$$

We fix the factorization (†) for $s_{\chi}(\mathbf{v})$. Let $\phi: v_j \mapsto y^{n_j}$ be a cyclotomic specialization. Then

•
$$a_{\chi_{\phi}} := \operatorname{val}(s_{\chi_{\phi}}(y)) = \operatorname{deg}(\phi(N_{\chi})) + \sum_{i \in I_{\chi}} n_{\chi,i} \operatorname{deg}(\Psi_{\chi,i})(\phi(M_{\chi,i}))^{-}$$
.

$$(y^n)^+ := \left\{ \begin{array}{ll} n, & \text{if } n > 0; \\ 0, & \text{if } n \le 0. \end{array} \right. \text{ and } (y^n)^- := \left\{ \begin{array}{ll} n, & \text{if } n < 0; \\ 0, & \text{if } n \ge 0. \end{array} \right.$$

Let $\chi \in Irr(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$s_{\chi}(\mathbf{v}) = \xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi,i} (M_{\chi,i})^{n_{\chi,i}} \qquad (\dagger)$$

We fix the factorization (†) for $s_{\chi}(\mathbf{v})$. Let $\phi: v_j \mapsto y^{n_j}$ be a cyclotomic specialization. Then

- $\bullet \ a_{\chi_\phi} := \operatorname{val}(s_{\chi_\phi}(y)) = \deg(\phi(N_\chi)) + \textstyle \sum_{i \in I_\chi} n_{\chi,i} \mathrm{deg}(\Psi_{\chi,i})(\phi(M_{\chi,i}))^-.$
- $A_{\chi_{\phi}} := \deg(s_{\chi_{\phi}}(y)) = \deg(\phi(N_{\chi})) + \sum_{i \in I_{\chi}} n_{\chi,i} \deg(\Psi_{\chi,i})(\phi(M_{\chi,i}))^+$.

$$(y^n)^+ := \left\{ \begin{array}{ll} n, & \text{if } n > 0; \\ 0, & \text{if } n \le 0. \end{array} \right. \text{ and } (y^n)^- := \left\{ \begin{array}{ll} n, & \text{if } n < 0; \\ 0, & \text{if } n \ge 0. \end{array} \right.$$

Let $\chi \in Irr(W)$. The generic Schur element $s_{\chi}(\mathbf{v})$ is of the form

$$s_{\chi}(\mathbf{v}) = \xi_{\chi} N_{\chi} \prod_{i \in I_{\chi}} \Psi_{\chi,i} (M_{\chi,i})^{n_{\chi,i}}$$
 (†).

We fix the factorization (†) for $s_{\chi}(\mathbf{v})$. Let $\phi: v_j \mapsto y^{n_j}$ be a cyclotomic specialization. Then

- $\bullet \ a_{\chi_\phi} := \operatorname{val}(s_{\chi_\phi}(y)) = \operatorname{deg}(\phi(N_\chi)) + \textstyle \sum_{i \in I_\chi} n_{\chi,i} \operatorname{deg}(\Psi_{\chi,i})(\phi(M_{\chi,i}))^-.$
- $\bullet \ A_{\chi_\phi} := \deg(s_{\chi_\phi}(y)) = \deg(\phi(N_\chi)) + \textstyle \sum_{i \in I_\chi} n_{\chi,i} \deg(\Psi_{\chi,i}) (\phi(M_{\chi,i}))^+.$

Theorem (C.)

Let W be an exceptional complex reflection group and $\chi, \psi \in Irr(W)$. If the characters χ_{ϕ} and ψ_{ϕ} belong to the same Rouquier block, then

$$a_{\chi_\phi} = a_{\psi_\phi}$$
 and $A_{\chi_\phi} = A_{\psi_\phi}$.