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lwahori-Hecke algebras

Let (W, S) be a finite Coxeter system,

W= (S]|s>=1, ststst..,=tststs... Vs, t €S ).
L ===
Mmst Mmst
Sn= (51,9, 5n-1 | ? =1, siSi415i = Siy1SiSit1, Sisj = sj5; if |i —j| > 1) )

Let L: S — Z be a function such that L(s) = L(t) whenever s and t are
conjugate in W. Let g be an indeterminate.

HoW) = ((Te)ses | TeTeTs... = TeTeTe. ., (Te—q" ) (Tetg 1)) = 0 Vs, t).

Mmst Mmst

TiTivaTi = Tiga Ti Tisa,
Hq(Gn)=<T1,T2,...,Tn_1 TiTi=T;T; if |i —j| > 1, >
(Ti—a"N(Ti+qg%)=0
where K := L(s1) = --- = L(Sp—1).




The a-function

Let w e W. Let w =55, ...5s; be a reduced expression for w. Set
Tw:=Ts Ts, ... Ts, . The algebra Hq(W) is a free C[q, g~ !]-module with basis

(TW)WEW-

Let 7: Hq(W) — Clg, ¢~ !] be the linear map defined by 7(T7) = 1 and
7(Tw) =0if w # 1. The map 7 is a symmetrising trace. By extension of scalars

to C(q), we have
1
T= E — Xv

Velrr(C(q)Hq(W)) v

for some sy € C[g, g~ '] (Schur elements).

The algebra C(q)Hq(W) is (split) semisimple, hence

Irr(W) <« Irr(C(q)Hq(W))
E — Ve ’

Let E € Irr(W). We set

a(E) := —valuation(sy,) and A(E) := —degree(sy;).




Canonical basic sets

Let 6 : Clg,q '] — C, g+ £ be a ring homomorphism such that £ € C*. The
algebra CH¢(W) is not necessarily semisimple. We obtain a decomposition matrix

D¢ = ([Ve : M])eet(w), MeTer(CHe (W))-

A canonical basic set for He(W) is a subset Be of Irr(W) such that
Q Lr(CHe(W)) < Be, M EM .

Q [Vew : M] =1 for all M € Irr(CHe (W) ;

@ if [VE: M] # 0 for some E € Irr(W), then either EM = E or a(EM) < a(E).

1 0 0
x* 1 0
De = & « 1
* ok *
* ok *
* % ok ok
——— —

Irr(CHe (W)

B

Irr(W)



Theorem [Geck, Rouquier, Jacon, C.]

Canonical basic sets exist for finite Coxeter groups.

It is well-known that
Ir(S,) < {)\:(Al > > A2 1):ZA,-:n}.

Let £ be a primitive root of unity of order e > 1. Then we have
Be = {\ | Xis e-regular} if K>0

and
Be = {\ | \is e-restricted} if K <0

where K := L(s1) = --- = L(sp—1).




Cellular structure

Under Lusztig's conjectures (P1)—(P15), lwahori-Hecke algebras are cellular :
@ Cell modules M(E)gcrer(w)-

@ Symmetric bilinear form (, ) on cell modules.

Theorem [Graham-Lehrer|
Set D(E) := M(E)/rad yM(E). We have that
© D(E) is either 0 or a simple CH¢(W)-module.

Q {D(E)|D(E) # 0} = Irr(CH (W) -

We have
{D(E)| D(E) # 0} = {D(E) | E € Be}.



Rational Cherednik algebras

Let b be the reflection representation of W, and let V = h & h*. We denote by S
the set of all reflections in W. For s € S, take

® a5 € h* : basis of Im(s —id,)

-
@ o € b basis of Im(s — id,)|.

Let c: S — C be a function such that c(s) = c(t) whenever s and t are
conjugate in W.

- TV* x W
B [X7X/] =0, [yayl] =0, [)/7X] :X(y) - Zsesc(s)as(y)x(a;/)s

for x,x’ € h* and y,y’ € h.

He(W)

W =6, S={s;=(0))} (x,-..,xn) basis of h*, (y1,...,yn) basis of b.
O Xi = X5(i) * 0y O Yi = Yo(i) " O Vo € G,.

Take ajj := x; — xj, ag =yi—yj,for1<i<j<n andceC.

Then the commutation relations in He(W) are:

[xi, ] =0, lyi,yj] =0, lyisxil =1 —€X,; 55 and [y;, x;] = cs; for i # j.




The category O

O = the category of finitely generated H¢(W)-modules locally nilpotent for the
action of b.

@ Standard modules A(E) = In dC[b]xW(E)' E € Irr(W).

Simple modules L(E) = Head(A(E)), E € Irr(W).
@ Decomposition matrix DC = ([A(F) : L(E)])e,Fetre(w)-
[A(E) : L(E)] =1, for all E € Irr(W).

@ There exists an ordering < on the standard modules (and consequently on
Irr(W)) such that if [A(F) : L(E)] # 0, then either E = F or E < F.
A famous ordering on the category O is the following:
E < F if and only if ¢(F) — c(E) € Z>o

where c(E) is the scalar with which the Euler element € Z(CW) acts on E.




The KZ functor

There exists an exact functor

KZ: O — He (W) —mod
where £ = exp(2mic(s)/L(s)). We have:
©Q KZ(L(E)) is either 0 or a simple H¢(W)-module.
Q {KZ(L(E)) | KZ(L(E)) # 0} = Irr(CHe (W)).
Q If KZ(L(E)) # 0, then [A(F) : L(E)] = [KZ(A(F)) : KZ(L(E))]. Thus,
> [KZ(A(E)) : KZ(L(E)] =1
> If [KZ(A(F)) : KZ(L(E))] # 0, then either E = F or E < F.

Proposition [C-Gordon-Griffeth]

For all E € Irr(W), we have

c(E) = a(E) + A(E).




Main result

Theorem [C-Gordon-Griffeth]

The a-function is an ordering on the category O. This in turn implies that
© there exists a canonical basic set Be for He(W) ;
@ KZ(L(E)) # 0 if and only if E € Be.

Moreover, we have KZ(A(E)) = M(E) (cell module) for all E € Irr(W).

Remark: The above theorem holds for the complex reflection group
G(¢,1,n) = (Z/0Z)" x &, (without the use of Ariki's theorem).



The case of G(¢,1,n)

Let e € Z~g and (so,51,-..,5-1) € Z*. We consider the specialised Ariki-Koike
algebra defined by

@ generators : To, T1,..., Tho1

] To , Th T2 Th1
@ relations : ° ° ® .. —e

(To=C@)(To =)+ (To =) =0
(Ti=¢)Ti+1)=0, foralli=1,...,n—1.

We set mj := {s; — je and m := (mj)o<j<¢—1. We consider the cyclotomic
Ariki-Koike algebra Hq m with relations:

(TO _ qmo)(TO _ Céqml) .. (TO _ gflquA) =0

qu}—)Ceg.
(Ti—q')(T; +1) =0, foralli=1,....,n—1



NS = {¢-partitions of n} < Tir(G(¢,1,n)) <« Trr(Hgm)

A=AO D) E>

Theorem [Geck-Jacon]

Canonical basic set <> {Uglov ¢-partitions}.

\:={y=(abc)|0<c<l—1,a>11<b<I}.

cont(y) := b(y) —a(y) and ¥(v) := cont(y) + s..

Theorem [Dunkl-Griffeth]

Let A, N € M., If [A(E?) : L(EM)] # 0, then there exist orderings on the nodes
Y1,72y -5 Yn @and Y1, Y5, - .-, vn of X and X respectively, and integers
M1, 42, - - -5 fin € Z>o such that, for all 1 <7 < n,

i = ) — e(af) mod £ and ;=€) — c(af) + (9(3) — 9(31).




Theorem [C-Gordon-Griffeth]

Let A, N € M4, If [A(E?) : L(EN)] # 0, then either X = X or a(EY) < a(E™).

Proof: Let v and 4/ be nodes of (-partitions. We write v <+’ if we have

I(y) <9(y')  or  I(y)=9(7) and c(v) > c(v').

Using the result by Dunkl and Griffeth, we can order the nodes v1,72,...,7, et
V1sVhy -5 Yh of X and X respectively such that, for all 1 </ < n,

M=o i =

Then we can prove that either X = X or a(E*') < a(E).



