Families of characters for cyclotomic Hecke algebras

Maria Chlouveraki

EPFL

30 MAIOY 2008
A *complex reflection group* W is a finite group of matrices with coefficients in a number field K generated by *pseudo-reflections*, i.e., elements whose vector space of fixed points is a hyperplane.
A **complex reflection group** W is a finite group of matrices with coefficients in a number field K generated by *pseudo-reflections*, *i.e.*, elements whose vector space of fixed points is a hyperplane.

If $K = \mathbb{Q}$, then W is a **Weyl group**.
Weyl groups
Weyl groups \rightarrow Complex reflection groups
Weyl groups \quad \rightarrow \quad \text{Complex reflection groups}

Finite reductive groups \quad \rightarrow \quad \text{Rouquier blocks}
Weyl groups \rightarrow Complex reflection groups

Finite reductive groups \rightarrow “Spetses” (?)
Weyl groups \rightarrow Complex reflection groups

Finite reductive groups \rightarrow “Spetses” (?)

Families of characters \rightarrow
Weyl groups → Complex reflection groups
Finite reductive groups → “Spetses” (?)
Families of characters → Rouquier blocks
Hecke algebras of complex reflection groups

Every complex reflection group \(W \) has a nice "presentation a la Coxeter":

\[
G_2 = \langle s, t \mid (st)^3 = (ts)^3, s^2 = t^2 = 1 \rangle
\]

The generic Hecke algebra \(H(W) \) has a presentation of the form:

\[
H(G_2) = \langle \sigma, \tau \mid (\sigma \tau)^3 = (\tau \sigma)^3, (\sigma - u_0)(\sigma - u_1) = (\tau - u_2)(\tau - u_3) = 0 \rangle
\]

and it's defined over the Laurent polynomial ring \(\mathbb{Z}[u, u^{-1}] \), where \(u = (u_0, u_1, u_2, u_3) \) is a set of indeterminates.
Hecke algebras of complex reflection groups

Every complex reflection group W has a nice “presentation a la Coxeter”:

$$G_2 = < s, t | (st)^3 = (ts)^3, s^2 = t^2 = 1 >$$
$$= < s, t | (st)^3 = (ts)^3, (s - 1)(s + 1) = (t - 1)(t + 1) = 0 >$$
Hecke algebras of complex reflection groups

Every complex reflection group W has a nice “presentation a la Coxeter”:

$$G_2 = < s, t | (st)^3 = (ts)^3, \quad s^2 = t^2 = 1 >$$

$$= < s, t | (st)^3 = (ts)^3, \quad (s - 1)(s + 1) = (t - 1)(t + 1) = 0 >$$

The generic Hecke algebra $\mathcal{H}(W)$ has a presentation of the form:

$$\mathcal{H}(G_2) = < \sigma, \tau | (\sigma \tau)^3 = (\tau \sigma)^3, \quad (\sigma - u_0)(\sigma - u_1) = (\tau - u_2)(\tau - u_3) = 0 >$$

and it’s defined over the Laurent polynomial ring $\mathbb{Z}[u, u^{-1}]$, where $u = (u_0, u_1, u_2, u_3)$ is a set of indeterminates.
A theorem by G. Malle provides us with a set of indeterminates \mathbf{v} such that the $K(\mathbf{v})$-algebra $K(\mathbf{v})\mathcal{H}(\mathcal{W})$ is split semisimple:

\[
\begin{align*}
\nu_0^2 &= u_0, \\
\nu_1^2 &= -u_1, \\
\nu_2^2 &= u_2, \\
\nu_3^2 &= -u_3
\end{align*}
\]
A theorem by G. Malle provides us with a set of indeterminates v such that the $K(v)$-algebra $K(v)\mathcal{H}(W)$ is split semisimple:

$$v_0^2 = u_0, \quad v_1^2 = -u_1, \quad v_2^2 = u_2, \quad v_3^2 = -u_3$$

By "Tits’ deformation theorem", the specialization $v_j \mapsto 1$ induces a bijection

$$\text{Irr}(K(v)\mathcal{H}(W)) \leftrightarrow \text{Irr}(W)$$

$$\chi_v \quad \mapsto \quad \chi$$
The generic Hecke algebra is endowed with a canonical symmetrizing form \(t \). We have that
\[
\sum_{\chi \in \text{Irr}(W)} \chi s_{v_{\chi}} v_{\chi},
\]
where \(s_{\chi} \) is the Schur element associated to \(v_{\chi} \). The irreducible factors are of the form \(\Psi(M) \), where \(\Psi \) is a \(K \)-cyclotomic polynomial in one variable, \(M \) is a primitive monomial of degree 0, i.e., if \(M = \prod v_{a_{j}} \), then \(\gcd(a_{j}) = 1 \) and \(\sum a_{j} = 0 \). The primitive monomials appearing in the factorization of \(s_{\chi} \) are unique up to inversion.
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form \(t \). We have that

\[
\sum_{\chi \in \text{Irr}(W)} \frac{1}{s_{\chi}} \chi_v,
\]

where \(s_{\chi} \) is the Schur element associated to \(\chi_v \in \text{Irr}(K(v)\mathcal{H}(W)) \).
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$ t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_{\chi}} \chi_v, $$

where s_{χ} is the Schur element associated to $\chi_v \in \text{Irr}(K(v)H(W))$.

Theorem (C.)

The generic Schur elements are polynomials in $\mathbb{Z}_K[v, v^{-1}]$ whose irreducible factors are of the form $\Psi(M)$, where

- Ψ is a K-cyclotomic polynomial in one variable,
- M is a primitive monomial of degree 0,
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_\chi} \chi_v,$$

where s_χ is the Schur element associated to $\chi_v \in \text{Irr}(K(v)\mathcal{H}(W))$.

Theorem (C.)

The generic Schur elements are polynomials in $\mathbb{Z}_K[v, v^{-1}]$ whose irreducible factors are of the form $\Psi(M)$, where

- Ψ is a K-cyclotomic polynomial in one variable,
- M is a primitive monomial of degree 0, i.e., if $M = \prod_j v_j^{a_j}$, then $\gcd(a_j) = 1$ and $\sum_j a_j = 0$.
Generic Schur elements

The generic Hecke algebra is endowed with a canonical symmetrizing form t. We have that

$$t = \sum_{\chi \in \text{Irr}(W)} \frac{1}{s_{\chi}} \chi_v,$$

where s_{χ} is the Schur element associated to $\chi_v \in \text{Irr}(K(v)\mathcal{H}(W))$.

Theorem (C.)

The generic Schur elements are polynomials in $\mathbb{Z}_K[v, v^{-1}]$ whose irreducible factors are of the form $\Psi(M)$, where

- Ψ is a K-cyclotomic polynomial in one variable,
- M is a primitive monomial of degree 0, i.e., if $M = \prod_j v_j^{a_j}$, then $\gcd(a_j) = 1$ and $\sum_j a_j = 0$.

The primitive monomials appearing in the factorization of s_{χ} are unique up to inversion.
Schur elements of G_2

$$s_1 = \Phi_4(v_0 v_1^{-1}) \cdot \Phi_4(v_2 v_3^{-1}) \cdot \Phi_3(v_0 v_1^{-1} v_2 v_3^{-1}) \cdot \Phi_6(v_0 v_1^{-1} v_2 v_3^{-1})$$

$$s_2 = 2 \cdot v_1^2 v_0^{-2} \cdot \Phi_3(v_0 v_1^{-1} v_2 v_3^{-1}) \cdot \Phi_6(v_0 v_1^{-1} v_2^{-1} v_3)$$

$\Phi_4(x) = x^2 + 1$, $\Phi_3(x) = x^2 + x + 1$, $\Phi_6(x) = x^2 - x + 1$.
Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A cyclotomic specialization of $H(W)$ is a $\mathbb{Z}[K]\langle v, v^{-1}\rangle$-algebra morphism $\phi: \mathbb{Z}[K]\langle v, v^{-1}\rangle \rightarrow \mathbb{Z}[K]\langle y, y^{-1}\rangle$ such that $\phi: v^{n_j} \mapsto y^{n_j}$, with $n_j \in \mathbb{Z}$ for all j.

The corresponding cyclotomic Hecke algebra H_ϕ is the $\mathbb{Z}[K]\langle y, y^{-1}\rangle$-algebra obtained as the specialization of $H(W)$ via the morphism ϕ.

Proposition (C.)

The algebra $K(y)H_\phi$ is split semisimple.

Maria Chlouveraki (EPFL)
Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A **cyclotomic specialization** of $\mathcal{H}(W)$ is a \mathbb{Z}_K-algebra morphism $\phi : \mathbb{Z}_K[v, v^{-1}] \to \mathbb{Z}_K[y, y^{-1}]$ such that

$$\phi : v_j \mapsto y^{n_j}, \text{ with } n_j \in \mathbb{Z} \text{ for all } j.$$
Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A cyclotomic specialization of $\mathcal{H}(W)$ is a \mathbb{Z}_K-algebra morphism $\phi : \mathbb{Z}_K[v, v^{-1}] \to \mathbb{Z}_K[y, y^{-1}]$ such that

$$\phi : v_j \mapsto y^{n_j}, \text{ with } n_j \in \mathbb{Z} \text{ for all } j.$$

The corresponding cyclotomic Hecke algebra \mathcal{H}_ϕ is the $\mathbb{Z}_K[y, y^{-1}]$-algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ.
Cyclotomic Hecke algebras

Definition

Let y be an indeterminate. A **cyclotomic specialization** of $\mathcal{H}(W)$ is a \mathbb{Z}_K-algebra morphism $\phi : \mathbb{Z}_K[v, v^{-1}] \rightarrow \mathbb{Z}_K[y, y^{-1}]$ such that

$$\phi : v_j \mapsto y^{n_j}, \text{ with } n_j \in \mathbb{Z} \text{ for all } j.$$

The corresponding **cyclotomic Hecke algebra** \mathcal{H}_ϕ is the $\mathbb{Z}_K[y, y^{-1}]$-algebra obtained as the specialization of $\mathcal{H}(W)$ via the morphism ϕ.

Proposition (C.)

The algebra $K(y)\mathcal{H}_\phi$ is split semisimple.
By “Tits’ deformation theorem”, we obtain

\[
\text{Irr}(K(v)\mathcal{H}(W)) \leftrightarrow \text{Irr}(K(y)\mathcal{H}_\phi) \leftrightarrow \text{Irr}(W)
\]

\[
\chi_v \leftrightarrow \chi_\phi \leftrightarrow \chi
\]
By “Tits’ deformation theorem”, we obtain

\[\text{Irr}(K(v)\mathcal{H}(W)) \leftrightarrow \text{Irr}(K(y)\mathcal{H}_\phi) \leftrightarrow \text{Irr}(W) \]

\[\chi_v \mapsto \chi_\phi \mapsto \chi \]

Proposition

The Schur element \(s_{\chi_\phi}(y) \) associated to the irreducible character \(\chi_\phi \) of \(K(y)\mathcal{H}_\phi \) is a Laurent polynomial in \(y \) of the form

\[
s_{\chi_\phi}(y) = \psi_{\chi_\phi} y^{a_{\chi_\phi}} \prod_{\Phi \in C_K} \Phi(y)^{n_{\chi_\phi,\Phi}},
\]

where \(\psi_{\chi_\phi} \in \mathbb{Z}_K, a_{\chi_\phi} \in \mathbb{Z}, n_{\chi_\phi,\Phi} \in \mathbb{N} \) and \(C_K \) is a set of \(K \)-cyclotomic polynomials.
Rouquier blocks

We call Rouquier ring of \(K \) the \(\mathbb{Z}[K] \)-subalgebra of \(K[y] \):

\[
R_K := \mathbb{Z}[K][y, y^{-1}, (y^n-1)^{-1}]_{n \geq 1}
\]

Definition

The Rouquier blocks of the cyclotomic Hecke algebra \(H_\phi \) are the blocks of \(R_K \), i.e., the partition \(BR(H_\phi) \) of \(\text{Irr}(W) \) minimal for the property:

For all \(B \in BR(H_\phi) \) and \(h \in H_\phi \),

\[
\sum_{\chi \in B} \chi \phi(h) s_{\chi} \in R_K[y].
\]
Rouquier blocks

We call **Rouquier ring** of K the \mathbb{Z}_K-subalgebra of $K(y)$

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)^{-1}_{n \geq 1}]$$
Rouquier blocks

We call Rouquier ring of K the \mathbb{Z}_K-subalgebra of $K(y)$

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)^{-1}_{n \geq 1}]$$

Definition

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_ϕ are the blocks of $\mathcal{R}_K(y)\mathcal{H}_\phi$.
Rouquier blocks

We call Rouquier ring of K the \mathbb{Z}_K-subalgebra of $K(y)$

$$\mathcal{R}_K(y) := \mathbb{Z}_K[y, y^{-1}, (y^n - 1)^{-1}_{n \geq 1}]$$

Definition

The Rouquier blocks of the cyclotomic Hecke algebra \mathcal{H}_ϕ are the blocks of $\mathcal{R}_K(y)\mathcal{H}_\phi$, i.e., the partition $BR(\mathcal{H}_\phi)$ of $\text{Irr}(W)$ minimal for the property:

For all $B \in BR(\mathcal{H}_\phi)$ and $h \in \mathcal{H}_\phi$, \(\sum_{\chi \in B} \frac{\chi_\phi(h)}{s_{\chi_\phi}} \in \mathcal{R}_K(y) \).
Let p be a prime ideal of \mathbb{Z}_K.
Let p be a prime ideal of \mathbb{Z}_K.

We denote by $B_p(\mathcal{H}_\phi)$ the partition of $\text{Irr}(W)$ into p-blocks of \mathcal{H}_ϕ (i.e., the blocks of the algebra $\mathbb{Z}_K[y, y^{-1}]_p\mathcal{H}_\phi$).
Let \(p \) be a prime ideal of \(\mathbb{Z}_K \).

We denote by \(B_p(\mathcal{H}_\phi) \) the partition of \(\text{Irr}(W) \) into \(p \)-blocks of \(\mathcal{H}_\phi \) (i.e., the blocks of the algebra \(\mathbb{Z}_K[y, y^{-1}]_p\mathcal{H}_\phi \)).

Proposition

The Rouquier blocks of \(\mathcal{H}_\phi \) is the partition of \(\text{Irr}(W) \) generated by the partitions \(B_p(\mathcal{H}_\phi) \), where \(p \) runs over the set of prime ideals of \(\mathbb{Z}_K \).
p-essential monomials
\textbf{Definition}

A primitive monomial M in $\mathbb{Z}_K[v,v^{-1}]$ is called \textit{p-essential for W} if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

$$\Psi(M) \text{ divides } s^2 \chi(v) \Psi(1).$$
p-essential monomials

Definition

A primitive monomial M in $\mathbb{Z}_K[v, v^{-1}]$ is called *p-essential for* W if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

1. $\Psi(M)$ divides $s_\chi(v)$
A primitive monomial M in $\mathbb{Z}_K[v, v^{-1}]$ is called \textit{p-essential for W} if there exists an irreducible character χ of W and a K-cyclotomic polynomial Ψ such that

1. $\Psi(M)$ divides $s_\chi(v)$
2. $\Psi(1) \in p$.

Definition
p-essential monomials and p-blocks

$\mathcal{A} := \mathbb{Z} K[v, v-1]$ and let $B_p(\mathcal{H})$ be the partition of $\text{Irr}(\mathcal{W})$ into p-blocks of $\mathcal{H}(\mathcal{W})$ (i.e., the blocks of the algebra $A_p \mathcal{H}(\mathcal{W})$).

Theorem (C.)

For every p-essential monomial M for \mathcal{W}, there exists a unique partition $B_M_p(\mathcal{H})$ of $\text{Irr}(\mathcal{W})$ with the following properties:

1. The parts of $B_M_p(\mathcal{H})$ are unions of the parts of $B_p(\mathcal{H})$.

2. The partition $B_p(\mathcal{H})$ is the partition generated by the partitions $B_p(\mathcal{H})$ et $B_M_p(\mathcal{H})$, where M runs over the set of all p-essential monomials which are sent to 1 by ϕ.

Moreover, the partition $B_M_p(\mathcal{H})$ coincides with the blocks of the algebra $A_{qM} \mathcal{H}(\mathcal{W})$, where $q_{M} := (M-1)A + pA$.
Set $A := \mathbb{Z}_K[v, v^{-1}]$ and let $B_p(H)$ be the partition of $\text{Irr}(W)$ into p-blocks of $H(W)$ (i.e., the blocks of the algebra $A_p H(W)$).
\(p \)-essential monomials and \(p \)-blocks

Set \(A := \mathbb{Z}_K[v, v^{-1}] \) and let \(B_p(H) \) be the partition of \(\text{Irr}(W) \) into \(p \)-blocks of \(H(W) \) (i.e., the blocks of the algebra \(A_p H(W) \)).

Theorem (C.)

For every \(p \)-essential monomial \(M \) for \(W \), there exists a unique partition \(B_p^M(H) \) of \(\text{Irr}(W) \) with the following properties:

1. The parts of \(B_p^M(H) \) are unions of the parts of \(B_p(H) \).
2. The partition \(B_p^M(H) \) is the partition generated by the partitions \(B_p(H) \) and \(B_p^M(H) \), where \(M \) runs over the set of all \(p \)-essential monomials which are sent to 1 by \(\phi \).

Moreover, the partition \(B_p^M(H) \) coincides with the blocks of the algebra \(A_q M H(W) \), where \(q_M := (M - 1)^A + p A \).
p-essential monomials and p-blocks

Set $A := \mathbb{Z}_K[v, v^{-1}]$ and let $B_p(H)$ be the partition of $\text{Irr}(W)$ into p-blocks of $H(W)$ (i.e., the blocks of the algebra $A_p H(W)$).

Theorem (C.)

For every p-essential monomial M for W, there exists a unique partition $B_p^M(H)$ of $\text{Irr}(W)$ with the following properties:

1. The parts of $B_p^M(H)$ are unions of the parts of $B_p(H)$.

Maria Chlouveraki (EPFL) Families of characters for cyclotomic Hecke September 14, 2008 13 / 16
p-essential monomials and p-blocks

Set \(A := \mathbb{Z}_K[v, v^{-1}] \) and let \(B_p(\mathcal{H}) \) be the partition of \(\text{Irr}(W) \) into p-blocks of \(\mathcal{H}(W) \) (i.e., the blocks of the algebra \(A_p \mathcal{H}(W) \)).

Theorem (C.)

For every p-essential monomial \(M \) for \(W \), there exists a unique partition \(B_p^M(\mathcal{H}) \) of \(\text{Irr}(W) \) with the following properties:

1. The parts of \(B_p^M(\mathcal{H}) \) are unions of the parts of \(B_p(\mathcal{H}) \).

2. The partition \(B_p(\mathcal{H}_\phi) \) is the partition generated by the partitions \(B_p(\mathcal{H}) \) et \(B_p^M(\mathcal{H}) \), where \(M \) runs over the set of all p-essential monomials which are sent to 1 by \(\phi \).
Set $A := \mathbb{Z}_K[v, v^{-1}]$ and let $\mathcal{B}_p(\mathcal{H})$ be the partition of $\text{Irr}(W)$ into p-blocks of $\mathcal{H}(W)$ (i.e., the blocks of the algebra $A_p \mathcal{H}(W)$).

Theorem (C.)

For every p-essential monomial M for W, there exists a unique partition $\mathcal{B}_p^M(\mathcal{H})$ of $\text{Irr}(W)$ with the following properties:

1. The parts of $\mathcal{B}_p^M(\mathcal{H})$ are unions of the parts of $\mathcal{B}_p(\mathcal{H})$.
2. The partition $\mathcal{B}_p(\mathcal{H}_\phi)$ is the partition generated by the partitions $\mathcal{B}_p(\mathcal{H})$ et $\mathcal{B}_p^M(\mathcal{H})$, where M runs over the set of all p-essential monomials which are sent to 1 by ϕ.

Moreover, the partition $\mathcal{B}_p^M(\mathcal{H})$ coincides with the blocks of the algebra $A_{q_M} \mathcal{H}(W)$, where $q_M := (M - 1)A + pA$.
The example of G_2

We denote the characters of G_2 as follows:

$\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}$.

$\Phi_4(x) = x^2 + 1$, $\Phi_3(x) = x^2 + x + 1$, $\Phi_6(x) = x^2 - x + 1$, $\Phi_4(1) = 2$, $\Phi_3(1) = 3$, $\Phi_6(1) = 1$.

Maria Chlouveraki (EPFL) Families of characters for cyclotomic Hecke September 14, 2008 14 / 16
The example of G_2

We denote the characters of G_2 as follows:

$$\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}.$$

Schur elements: 2-essential in purple, 3-essential in green

$$s_1 = \Phi_4(v_0 v_1^{-1}) \cdot \Phi_4(v_2 v_3^{-1}) \cdot \Phi_3(v_0 v_1^{-1} v_2 v_3^{-1}) \cdot \Phi_6(v_0 v_1^{-1} v_2 v_3^{-1})$$

$$s_2 = 2 \cdot v_1^2 v_0^{-2} \cdot \Phi_3(v_0 v_1^{-1} v_2 v_3^{-1}) \cdot \Phi_6(v_0 v_1^{-1} v_2^{-1} v_3)$$

$$\Phi_4(x) = x^2 + 1, \quad \Phi_3(x) = x^2 + x + 1, \quad \Phi_6(x) = x^2 - x + 1$$
The example of G_2

We denote the characters of G_2 as follows:

$$\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}.$$
The 2-essential monomials for G_2 are:

$$M_1 := v_0 v_1^{-1} \quad \text{and} \quad M_2 := v_2 v_3^{-1}.$$
The 2-essential monomials for G_2 are:

$$M_1 := v_0 v_1^{-1} \text{ and } M_2 := v_2 v_3^{-1}.$$

The 3-essential monomials for G_2 are:

$$M_3 := v_0 v_1^{-1} v_2 v_3^{-1} \text{ and } M_4 := v_0 v_1^{-1} v_2^{-1} v_3.$$
The 2-essential monomials for G_2 are:

$$M_1 := v_0 v_1^{-1} \text{ and } M_2 := v_2 v_3^{-1}. $$

The 3-essential monomials for G_2 are:

$$M_3 := v_0 v_1^{-1} v_2 v_3^{-1} \text{ and } M_4 := v_0 v_1^{-1} v_2^{-1} v_3. $$

<table>
<thead>
<tr>
<th>Monomial</th>
<th>$B^M_2(\mathcal{H})$</th>
<th>$B^M_3(\mathcal{H})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(\chi_{2,1}, \chi_{2,2})$</td>
<td>-</td>
</tr>
<tr>
<td>M_1</td>
<td>$(\chi_{1,0}, \chi_{1,3'})$, $(\chi_{2,1}, \chi_{2,2})$, $(\chi_{1,6}, \chi_{1,3''})$</td>
<td>-</td>
</tr>
<tr>
<td>M_2</td>
<td>$(\chi_{1,0}, \chi_{1,3''})$, $(\chi_{2,1}, \chi_{2,2})$, $(\chi_{1,6}, \chi_{1,3'})$</td>
<td>-</td>
</tr>
<tr>
<td>M_3</td>
<td>$(\chi_{2,1}, \chi_{2,2})$</td>
<td>$(\chi_{1,0}, \chi_{1,6}, \chi_{2,2})$</td>
</tr>
<tr>
<td>M_4</td>
<td>$(\chi_{2,1}, \chi_{2,2})$</td>
<td>$(\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1})$</td>
</tr>
</tbody>
</table>
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

The only essential monomial sent to 1 is M_4. Thus the Rouquier blocks of H_s are:

$(\chi_1, 0), (\chi_1, 6), (\chi_1, 3'), (\chi_1, 3''), (\chi_2, 1), (\chi_2, 2)$.

Determination of the Rouquier blocks of the group algebra W:

All essential monomials are sent to 1. We have:

#2-blocks

$(\chi_1, 0), (\chi_1, 6), (\chi_1, 3'), (\chi_1, 3'')$,

$(\chi_2, 1), (\chi_2, 2)$.

#3-blocks

$(\chi_1, 0), (\chi_1, 6), (\chi_2, 2)$,

$(\chi_1, 3'), (\chi_1, 3''), (\chi_2, 1)$.

#1 Rouquier block

$(\chi_1, 0), (\chi_1, 6), (\chi_1, 3'), (\chi_1, 3''), (\chi_2, 1), (\chi_2, 2)$.
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^S : \quad v_0 \mapsto y \quad v_2 \mapsto y \]

\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(H_s^\phi \) are:

\[(\chi_1^1, 0), (\chi_1^1, 6), (\chi_1^1, 3') \]

Determining the Rouquier blocks of the group algebra \(\phi^W \):

\[v_0 \mapsto 1 \quad v_2 \mapsto 1 \]

\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

All essential monomials are sent to 1. We have:

#2 2-blocks

\[(\chi_1^1, 0, \chi_1^1, 6, \chi_1^1, 3'), (\chi_1^2, 1, \chi_1^2, 2) \]

#2 3-blocks

\[(\chi_1^1, 0, \chi_1^1, 6, \chi_2^2, 2), (\chi_1^1, 3', \chi_1^1, 3'', \chi_2^1, 1) \]

#1 Rouquier block

\[(\chi_1^1, 0, \chi_1^1, 6, \chi_1^1, 3', \chi_1^1, 3'', \chi_2^2, 1, \chi_2^2, 2) \]
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^s : \begin{align*}
v_0 &\mapsto y \quad v_2 \mapsto y \\
v_1 &\mapsto 1 \quad v_3 \mapsto 1
\end{align*} \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(\mathcal{H}_\phi^s \) are:

- \(\chi_{1,0}, \chi_{1,6}, \chi_{1,3}', \chi_{2,1}, \chi_{2,2} \)
- \(\chi_{1,0}, \chi_{1,6}, \chi_{2,2} \)

Maria Chlouveraki (EPFL) Families of characters for cyclotomic Hecke September 14, 2008 16 / 16
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^s : \begin{align*} v_0 & \mapsto y \quad v_2 \mapsto y \\ v_1 & \mapsto 1 \quad v_3 \mapsto 1 \end{align*} \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(H^s_\phi \) are:

\[(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}). \]
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^s : v_0 \mapsto y \quad v_2 \mapsto y \]
\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(\mathcal{H}^s_\phi \) are:

\[(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}) \].

Determination of the Rouquier blocks of the group algebra
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^s : \begin{align*} \nu_0 & \mapsto y \\ \nu_2 & \mapsto y \\ \nu_1 & \mapsto 1 \\ \nu_3 & \mapsto 1 \end{align*} \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(H^s_\phi \) are:

\[(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}) \].

Determination of the Rouquier blocks of the group algebra

\[\phi^W : \begin{align*} \nu_0 & \mapsto 1 \\ \nu_2 & \mapsto 1 \\ \nu_1 & \mapsto 1 \\ \nu_3 & \mapsto 1 \end{align*} \]
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^s : \quad v_0 \mapsto y \quad v_2 \mapsto y \]
\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(\mathcal{H}_\phi^s \) are:

\[(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}) \]

Determination of the Rouquier blocks of the group algebra

\[\phi^W : \quad v_0 \mapsto 1 \quad v_2 \mapsto 1 \]
\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

All essential monomials are sent to 1. We have:
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^s : \ v_0 \mapsto y \quad v_2 \mapsto y \]
\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(H^s_\phi \) are:

\[(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}) \].

Determination of the Rouquier blocks of the group algebra

\[\phi^W : \ v_0 \mapsto 1 \quad v_2 \mapsto 1 \]
\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

All essential monomials are sent to 1. We have:

\[\#2 \ 2\text{-blocks} \quad (\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}), (\chi_{2,1}, \chi_{2,2}) \]
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^s : v_0 \mapsto y \quad v_2 \mapsto y \]
\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(\mathcal{H}^s_\phi \) are:

\((\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}) \).

Determination of the Rouquier blocks of the group algebra

\[\phi^W : v_0 \mapsto 1 \quad v_2 \mapsto 1 \]
\[v_1 \mapsto 1 \quad v_3 \mapsto 1 \]

All essential monomials are sent to 1. We have:

\#2 2-blocks \((\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}), (\chi_{2,1}, \chi_{2,2}) \)

\#2 3-blocks \((\chi_{1,0}, \chi_{1,6}, \chi_{2,2}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}) \)
Determination of the Rouquier blocks of a cyclotomic Hecke algebra

\[\phi^s : \begin{array}{c@{}c@{}c@{}c}
v_0 & \mapsto & y & v_2 \mapsto y \\
v_1 & \mapsto & 1 & v_3 \mapsto 1 \end{array} \]

The only essential monomial sent to 1 is \(M_4 \). Thus the Rouquier blocks of \(H^s_\phi \) are:

\[(\chi_{1,0}), (\chi_{1,6}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}). \]

Determination of the Rouquier blocks of the group algebra

\[\phi^W : \begin{array}{c@{}c@{}c@{}c}
v_0 & \mapsto & 1 & v_2 \mapsto 1 \\
v_1 & \mapsto & 1 & v_3 \mapsto 1 \end{array} \]

All essential monomials are sent to 1. We have:

- #2 2-blocks: \((\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}), (\chi_{2,1}, \chi_{2,2}) \)
- #2 3-blocks: \((\chi_{1,0}, \chi_{1,6}, \chi_{2,2}), (\chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}) \)
- #1 Rouquier block: \((\chi_{1,0}, \chi_{1,6}, \chi_{1,3'}, \chi_{1,3''}, \chi_{2,1}, \chi_{2,2}) \)